#
cross-validation
Here are 430 public repositories matching this topic...
scikit-learn cross validators for iterative stratification of multilabel data
-
Updated
Jan 13, 2019 - Python
Machine learning for C# .Net
learning
machine-learning
opensource
deep-learning
csharp
dotnet
random-forest
metrics
machine
cross-validation
gradient-boosting-machine
ensemble-learning
adaboost
decision-trees
neural-nets
-
Updated
Jul 12, 2020 - C#
A Portfolio of my Data Science Projects
finance
data-science
jupyter-notebook
cross-validation
regression
data-visualization
data-analysis
rmarkdown-document
-
Updated
Oct 8, 2019 - Jupyter Notebook
Time Series Cross-Validation -- an extension for scikit-learn
data-science
machine-learning
time-series
cross-validation
model-selection
hyperparameter-optimization
tuning-parameters
backtesting
-
Updated
Feb 20, 2020 - Python
Machine Learning with the NSL-KDD dataset for Network Intrusion Detection
machine-learning
random-forest
cross-validation
feature-selection
decision-trees
datamining
intrusion-detection-system
network-intrusion-detection
kdd99
nsl-kdd
-
Updated
Apr 5, 2020 - Jupyter Notebook
loo R package for approximate leave-one-out cross-validation (LOO-CV) and Pareto smoothed importance sampling (PSIS)
cross-validation
bayesian-methods
stan
r-package
bayesian-data-analysis
model-comparison
information-criterion
-
Updated
Jul 29, 2020 - R
Easy and comprehensive assessment of predictive power, with support for neuroimaging features
machine-learning
scikit-learn
cross-validation
report
easy-to-use
neuroimaging
pattern-recognition
nilearn
tractography
structural-imaging
anatomical-mri
functional-connectivity
tract-based-statistics
resting-state
-
Updated
Jul 13, 2020 - Python
Automated rejection and repair of bad trials/sensors in M/EEG
-
Updated
Jul 10, 2020 - Python
State-of-the art Automated Machine Learning python library for Tabular Data
python
data-science
machine-learning
sklearn
cross-validation
ml
model-selection
xgboost
hyperparameter-optimization
machine-learning-library
hyperparameter-tuning
optimisation
automl
stacking
auto-ml
machine-learning-models
automatic-machine-learning
data-science-projects
stacking-ensemble
-
Updated
Aug 5, 2020 - Python
A library that unifies the API for most commonly used libraries and modeling techniques for time-series forecasting in the Python ecosystem.
wrapper
data-science
time-series
sklearn
parallel
cross-validation
transformer
model-selection
statsmodels
wrapper-library
sklearn-compatible
fbprophet
sarimax
time-series-forecasting
sklearn-library
sklearn-api
pmdarima
tbats
-
Updated
Aug 17, 2020 - Python
python
machine-learning
optimization
scikit-learn
models
cross-validation
hyperparameter-optimization
pretty-logo
-
Updated
Apr 19, 2019 - Python
Useful functions to work with PyTorch. At the moment, there is a function to work with cross validation and kernels visualization.
-
Updated
May 29, 2020 - Python
LIBSVM for the browser and nodejs 🔥
-
Updated
Mar 20, 2019 - JavaScript
Hyperparameter tuning for machine learning models using a distributed genetic algorithm
machine-learning
rabbitmq
genetic-algorithm
keras
cross-validation
xgboost
hyperparameter-optimization
convolutional-neural-networks
genetic-algorithms
grid-search
hyperparameter-tuning
distributed-algorithm
master-worker
gene-encoding
distributed-genetic-algorithm
-
Updated
Mar 7, 2020 - Python
subsemble R package for ensemble learning on subsets of data
-
Updated
Aug 1, 2017 - R
SuperLearner guide: fitting models, ensembling, prediction, hyperparameters, parallelization, timing, feature selection, etc.
-
Updated
Apr 17, 2019 - HTML
R package cross-validation, bootstrap, permutation, and rolling window resampling techniques for the tidyverse.
bootstrap
tidyverse
cross-validation
permutation
jackknife
resampling-methods
rolling-windows
modelr
-
Updated
Jul 22, 2018 - R
pytorch based framework for Convolutional Neural Network
machine-learning
computer-vision
graph-algorithms
cross-validation
pytorch
convolutional-neural-networks
unet
vessel-segmentation
image-procesing
multiple-gpu
u-net
pytorch-implementation
fundus-image
pytorch-vizualization
retinal-vessel-segmentation
universal-pytorch-framework
centralized-image-processing
custom-data-loader-pytorch
custom-dataloader
-
Updated
Jul 30, 2020 - Jupyter Notebook
machine-learning
deep-learning
tensorflow
cross-validation
python3
convolutional-neural-networks
handwritten-text-recognition
ctc-loss
lstm-networks
-
Updated
Apr 16, 2018 - Python
Machine learning toolkits with Python
python
bootstrap
machine-learning
metrics
scikit-learn
evaluation
cross-validation
ensemble
ensemble-learning
roc
grid-search
-
Updated
Oct 7, 2017 - Jupyter Notebook
The implementation of 3D-UNet using PyTorch
cross-validation
pytorch
unet
semantic-segmentation
volumetric-data
3d-segmentation
pytorch-implementation
3d-unet
-
Updated
Feb 12, 2020 - Python
Use the famous CIFAR-10 dataset to train a multi-layer neural network to recognize images of cats, dogs, and other things.
php
machine-learning
tutorial
deep-neural-networks
computer-vision
deep-learning
neural-network
pipeline
cross-validation
artificial-intelligence
computer
image-classification
image-recognition
object-detection
example-project
cifar-10
php-ml
machine-learning-tutorial
rubix-ml
php-machine-learning
-
Updated
Aug 7, 2020 - PHP
Configurable Naive Bayes Classifier for text with cross-validation support
-
Updated
Aug 14, 2019 - JavaScript
Spatio-temporal resampling methods for mlr3
-
Updated
Aug 19, 2020 - R
All codes, both created and optimized for best results from the SuperDataScience Course
natural-language-processing
reinforcement-learning
deep-learning
clustering
cross-validation
naive-bayes-classifier
thompson-sampling
neural-networks
classification
dimensionality-reduction
grid-search
principal-component-analysis
clustering-algorithm
upper-confidence-bounds
k-fold
xgboost-algorithm
association-rule-learning
machine-learning-az
-
Updated
Nov 5, 2017 - Python
iris数据集的基本数据分析方法,包括KNN,LG,NB,SVM算法。
data-science
machine-learning
kde
numpy
svm
naive-bayes
sklearn
cross-validation
python3
logistic-regression
iris
knn
-
Updated
Apr 22, 2017 - Python
An Interactive Approach to Understanding Deep Learning with Keras
machine-learning
tensorflow
scikit-learn
keras
cross-validation
regression
classification
artificial-neural-networks
logistic-regression
regularization
support-vector-machine
vectors
decision-trees
hyperparameter-tuning
model-evaluation
magnetic-resonance-imaging
k-means-clustering
model-tuning
scalars
linear-transformation
-
Updated
Jul 13, 2020 - Jupyter Notebook
Improve this page
Add a description, image, and links to the cross-validation topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the cross-validation topic, visit your repo's landing page and select "manage topics."


Unlike N-Gram, the current Skip-Gram tokenizer does not allow variable length tokens. This ticket is to implement a min max scheme similar to the N-Gram tokenizer such that each token is a k-skip-n-gram. In other words, instead of fi