Video Description
You’ve probably heard of Deepmind’s AI playing games and getting really good at playing them (like AlphaGo beating the Go world champion). Such agents are built with the help of a paradigm of machine learning called “Reinforcement Learning” (RL).
In this course, you’ll walk through different approaches to RL. You’ll move from a simple Q-learning to a more complex, deep RL architecture and implement your algorithms using Tensorflow’s Python API. You’ll be training your agents on two different games in a number of complex scenarios to make them more intelligent and perceptive.
By the end of this course, you’ll be able to implement RL-based solutions in your projects from scratch using Tensorflow and Python.
The code bundle for this video course is available at: https://github.com/PacktPublishing/-Hands-on-Reinforcement-Learning-with-TensorFlow
Style and Approach
A practical guide that demonstrates how to create smart agents by implementing different Reinforcement Learning techniques with Python and Tensorflow, and how to easily improve their performance in different games and environments.

Formed in 2009, the Archive Team (not to be confused with the archive.org Archive-It Team) is a rogue archivist collective dedicated to saving copies of rapidly dying or deleted websites for the sake of history and digital heritage. The group is 100% composed of volunteers and interested parties, and has expanded into a large amount of related projects for saving online and digital history.
