The Wayback Machine - https://web.archive.org/web/20180602213505/https://link.springer.com/article/10.1023%2FB%3ANUMA.0000049459.69390.ff

Numerical Algorithms

, Volume 37, Issue 1–4, pp 113–125 | Cite as

High Radix BKM Algorithm

  • Laurent-Stéphane Didier
  • Fabien Rico
Article
  • 70 Downloads

Abstract

In this paper, a high radix implementation of the BKM algorithm is introduced. The BKM algorithm is a shift-and-add CORDIC-like algorithm that performs fast computation of complex exponential and logarithm without any scalling factor. The proposed implementation reduces the number of iterations needed for the calculation. Compared to previous implementations of high radix BKM algorithm, it needs smaller lookup tables.

elementary function CORDIC algorithm computer arithmetic high radix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Antelo, T. Lang and J.D. Bruguera, Very-high cordic rotation based on selection by rounding, J. VLSI Signal Processing Systems Signal Image Video Technol. 25(2) (2000) 141–154.Google Scholar
  2. [2]
    E. Antelo, T. Lang and J.D. Bruguera, Very-high radix circular cordic vectoring and unified rotation/ vectoring, IEEE Trans. Comput. 49(7) (2000) 727–738.Google Scholar
  3. [3]
    J.C. Bajard and L. Imbert, Evaluation of complex elementary functions: A new version of BKM, in: Advanced Signal Processing Algorithms, Architectures and Implementations IX, ed. F.T. Luk, Proc. of SPIE, Vol. 3807, Denver, USA, July 1999, pp. 2–9.Google Scholar
  4. [4]
    J.C. Bajard, S. Kla and J.M. Muller, BKM: A new complex algorithm for complex elementary functions, IEEE Trans. Comput. 43(8) (1994) 955–963.Google Scholar
  5. [5]
    J.M. Borwein and P.B. Borwein, The arithmetic-geometric mean and fast computation of elementary functions, SIAM Rev. 26(3) (1984) 351–366.Google Scholar
  6. [6]
    R.P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM 23(2) (1976) 242–251.Google Scholar
  7. [7]
    M. Daumas and C. Moreau-Finot, Exponential: Implementation trade-offs for hundred bit precision, in: “Real Numbers and Computers”, eds. J.C. Bajard, C. Frougny, P. Kornerup and J.M. Muller, April 2000, pp. 61–74.Google Scholar
  8. [8]
    H. Dawid and H. Meyr, The differential cordic algorithm: Constant scale factor redundant implementation without correcting iterations, IEEE Trans. Comput. 45(3) (1996) 307–318.Google Scholar
  9. [9]
    F. de Dinechin and A. Tisserand, Some improvement on multipartie table methods, Technical Report, LIP (2000).Google Scholar
  10. [10]
    H. Hassler and N. Takagi, Function evaluation by table look-up and addition, in: Proc. of the 12th IEEE Symposium on Computer Arithmetic, eds. S. Knowles and W.H. McAllister (IEEE Computer Soc. Press, Los Alamitos, CA, 1995) pp. 10–16.Google Scholar
  11. [11]
    L. Imbert, J.-M. Muller and F. Rico, Radix-10 BKM algorithm for computing transcendentals on pocket computers, J. VLSI Signal Processing Systems Signal Image Video Technol. 25(2) (2000) 179–186.Google Scholar
  12. [12]
    D. Lewis, High-Radix redundant cordic algorithms for complexe logarithmic number system arithmetic, in: Proc. of the 14th Symposium on Computer Arithmetic, 1999, pp. 194–203.Google Scholar
  13. [13]
    J.-M. Muller, Elementary Functions, Algorithms and Implementation (Birkhäuser, Boston, 1997).Google Scholar
  14. [14]
    D.D. Sarma and D.W. Matula, Faithful bipartite rom reciprocal tables, in: Proc. of the 12th IEEE Symposium on Computer Arithmetic, eds. S. Knowles and W.H. McAllister (IEEE Computer Soc. Press, Los Alamitos, CA, 1995) pp. 10–16.Google Scholar
  15. [15]
    D.M. Smith, Efficient multiple-precision evaluation of elementary functions, Math. Comp. 52(185) (1989) 131–134.Google Scholar
  16. [16]
    P.T.P. Tang, Table-driven implementation of the exponential function in ieee floating-point arithmetic, ACM Trans. Math. Software 15(2) (1989) 144–157.Google Scholar
  17. [17]
    J. Volder, The CORDIC computing technique, IEEE Trans. Comput. (1959), reprinted in: Computer Arithmetic, Vol. 1, ed. E.E. Swartzlander (IEEE Computer Soc. Press, Los Alamitos, CA, 1990).Google Scholar
  18. [18]
    J.S. Walther, A unified algorithm for elementary functions, in: Joint Computer Conf. Proceedings, 1971, reprinted in: Computer Arithmetic, Vol. 1, ed. E.E. Swartzlander (IEEE Computer Soc. Press, Los Alamitos, CA, 1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Laurent-Stéphane Didier
    • 1
  • Fabien Rico
    • 1
  1. 1.Laboratoire d'Informatique de Paris 6ParisFrance

Personalised recommendations