Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Fine-tuning implications for complementary dark matter and LHC SUSY searches

  • Open access
  • Published: 26 May 2011
  • Volume 2011, article number 120, (2011)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Fine-tuning implications for complementary dark matter and LHC SUSY searches
Download PDF
  • S. Cassel1,
  • D. M. Ghilencea2,3,4,
  • S. Kraml5,
  • A. Lessa6 &
  • …
  • G. G. Ross1 
  • 583 Accesses

  • 40 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E T miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with dark matter and EW constraints, corresponding to a fine-tuning not worse than 1:100. To cover the complete low-fine-tuned region by SUSY searches at the LHC will require running at the full 14 TeV CM energy; in addition it may be tested indirectly by Higgs searches covering the mass range below 120 GeV.

Article PDF

Download to read the full article text

Similar content being viewed by others

Search for a compressed supersymmetric spectrum with a light gravitino

Article Open access 07 September 2017

A revisit to a compressed supersymmetric spectrum with 125 GeV Higgs

Article Open access 11 January 2016

Supersymmetric models in light of improved Higgs mass calculations

Article Open access 19 February 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Astrophysics
  • Dark Energy and Dark Matter
  • Optimization
  • Particle Physics
  • Physics and Astronomy
  • Science Policy
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Cassel, D.M. Ghilencea and G.G. Ross, Fine tuning as an indication of physics beyond the MSSM, Nucl. Phys. B 825 (2010) 203 [arXiv:0903.1115] [SPIRES].

    Article  ADS  Google Scholar 

  2. S. Cassel, D.M. Ghilencea and G.G. Ross, Testing SUSY, Phys. Lett. B 687 (2010) 214 [arXiv:0911.1134] [SPIRES].

    ADS  Google Scholar 

  3. S. Cassel, D.M. Ghilencea and G.G. Ross, Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order, Nucl. Phys. B 835 (2010) 110 [arXiv:1001.3884] [SPIRES].

    Article  ADS  Google Scholar 

  4. B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  5. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in Low-Energy Superstring Models, Mod. Phys. Lett. A 1 (1986) 57 [SPIRES].

    ADS  Google Scholar 

  6. R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [SPIRES].

    Article  ADS  Google Scholar 

  7. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [SPIRES].

    ADS  Google Scholar 

  8. J.L. Feng and K.T. Matchev, Focus Point Supersymmetry: Proton Decay, Flavor and CP-violation and the Higgs Boson Mass, Phys. Rev. D 63 (2001) 095003 [hep-ph/0011356] [SPIRES].

    ADS  Google Scholar 

  9. J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [SPIRES].

    Article  ADS  Google Scholar 

  10. K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [SPIRES].

    ADS  Google Scholar 

  11. I. Gogoladze, M.U. Rehman and Q. Shafi, Amelioration of Little Hierarchy Problem in SU(4) c  × SU(2) L  × SU(2) R , Phys. Rev. D 80 (2009) 105002 [arXiv:0907.0728] [SPIRES].

    ADS  Google Scholar 

  12. D. Horton and G.G. Ross, Naturalness and Focus Points with Non-Universal Gaugino Masses, Nucl. Phys. B 830 (2010) 221 [arXiv:0908.0857] [SPIRES].

    Article  ADS  Google Scholar 

  13. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  14. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  15. WMAP collaboration, J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  16. H. Baer, V. Barger, A. Lessa and X. Tata, Capability of LHC to discover supersymmetry with \( \sqrt {s} = 7 \) TeV and 1 fb −1, JHEP 06 (2010) 102 [arXiv:1004.3594] [SPIRES].

    Article  ADS  Google Scholar 

  17. H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = 10 \) and 14 TeV without and with missing E T , JHEP 09 (2009) 063 [arXiv:0907.1922] [SPIRES].

    Article  ADS  Google Scholar 

  18. CMS collaboration, V. Khachatryan et al., Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].

    ADS  Google Scholar 

  19. ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, arXiv:1102.5290 [SPIRES].

  20. The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  21. S. Cassel, Naturalness of electroweak physics within minimal supergravity, University of Oxford D. Phil thesis, to appear.

  22. W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [SPIRES].

    Article  ADS  Google Scholar 

  23. L. Covi, J. Hasenkamp, S. Pokorski and J. Roberts, Gravitino Dark Matter and general neutralino NLSP, JHEP 11 (2009) 003 [arXiv:0908.3399] [SPIRES].

    Article  ADS  Google Scholar 

  24. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario, JCAP 04 (2011) 039 [arXiv:1012.3769] [SPIRES].

    ADS  Google Scholar 

  25. L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP 05 (2001) 033 [hep-ph/0101009] [SPIRES].

    Article  ADS  Google Scholar 

  26. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  27. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  28. A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of Supersymmetric Particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [SPIRES].

    ADS  Google Scholar 

  29. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  30. ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21 [arXiv:1003.3124] [SPIRES].

    ADS  Google Scholar 

  31. L. Demortier, S. Jain and H.B. Prosper, Reference priors for high energy physics, Phys. Rev. D 82 (2010) 034002 [arXiv:1002.1111] [SPIRES].

    ADS  Google Scholar 

  32. S. Sekmen, Exploring the SUSY Landscape: A New Bayesian Approach, talk at SUSY10, 23–28 Aug. 2010, Physikalisches Institut, Bonn, Germany.

  33. B. Altunkaynak, M. Holmes, P. Nath, B.D. Nelson and G. Peim, SUSY Discovery Potential and Benchmarks for Early Runs at \( \sqrt {s} = 7 \) TeV at the LHC, Phys. Rev. D 82 (2010) 115001 [arXiv:1008.3423] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom

    S. Cassel & G. G. Ross

  2. Department of Physics, CERN - Theory Division, CH-1211, Geneva 23, Switzerland

    D. M. Ghilencea

  3. Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128, Palaiseau, France

    D. M. Ghilencea

  4. Theoretical Physics Department, IFIN-HH, Bucharest, MG-6, Romania

    D. M. Ghilencea

  5. Laboratoire de Physique Subatomique et de Cosmologie, UJF Grenoble 1, CNRS/IN2P3, INPG, 53 Avenue des Martyrs, F-38026, Grenoble, France

    S. Kraml

  6. Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK, 73019, U.S.A.

    A. Lessa

Authors
  1. S. Cassel
    View author publications

    Search author on:PubMed Google Scholar

  2. D. M. Ghilencea
    View author publications

    Search author on:PubMed Google Scholar

  3. S. Kraml
    View author publications

    Search author on:PubMed Google Scholar

  4. A. Lessa
    View author publications

    Search author on:PubMed Google Scholar

  5. G. G. Ross
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to S. Cassel.

Additional information

ArXiv ePrint: 1101.4664

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Cassel, S., Ghilencea, D.M., Kraml, S. et al. Fine-tuning implications for complementary dark matter and LHC SUSY searches. J. High Energ. Phys. 2011, 120 (2011). https://doi.org/10.1007/JHEP05(2011)120

Download citation

  • Received: 15 February 2011

  • Revised: 05 May 2011

  • Accepted: 06 May 2011

  • Published: 26 May 2011

  • DOI: https://doi.org/10.1007/JHEP05(2011)120

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

172.70.126.24

ICE Institution of Civil Engineers (3000167333) - Institution of Civil Engineers Library (2000027800)

Springer Nature

© 2025 Springer Nature