610

I need to store some statistics using JavaScript in a way like I'd do it in C#:

Dictionary<string, int> statistics;

statistics["Foo"] = 10;
statistics["Goo"] = statistics["Goo"] + 1;
statistics.Add("Zoo", 1);

Is there an Hashtable or something like Dictionary<TKey, TValue> in JavaScript? How could I store values in such a way?

4
  • 2
    js is loosely typed, so there's no way to just declare a string or int, you can just declare a var and assign it a string or int. :D Commented Jul 30, 2009 at 18:07
  • You might want to check out xDict. jsfiddle.net/very/MuVwd It is a dictionary String=>anything written in Javascript. Commented Feb 10, 2012 at 16:51
  • This article has an excellent explanation of how associative arrays are implemented under-the-hood in Javascript jayconrod.com/posts/52/a-tour-of-v8-object-representation Commented Sep 1, 2018 at 3:59
  • The accepted answer was written in 2009 - it only supports string keys. For non-string keys, use Map or WeakMap, as in Vitalii's answer. Commented Oct 27, 2019 at 13:36

11 Answers 11

592

Use JavaScript objects as associative arrays.

Associative Array: In simple words associative arrays use Strings instead of Integer numbers as index.

Create an object with

var dictionary = {};

JavaScript allows you to add properties to objects by using the following syntax:

Object.yourProperty = value;

An alternate syntax for the same is:

Object["yourProperty"] = value;

If you can, also create key-to-value object maps with the following syntax:

var point = { x:3, y:2 };

point["x"] // returns 3
point.y // returns 2

You can iterate through an associative array using the for..in loop construct as follows

for(var key in Object.keys(dict)){
  var value = dict[key];
  /* use key/value for intended purpose */
}
Sign up to request clarification or add additional context in comments.

8 Comments

Note that the author's approach of initializing an "associative array" with new Array() is frowned up. The article eventually mentions its drawbacks and suggests new Object() or {} as preferred alternatives, but that's near the end and I fear most readers won't get that far.
Fail. JavaScript doesn't support object references as keys, while something like Flash/AS3 Dictionary does. In JavaScript, var obj1 = {}; var obj2 = {}; var table= {}; table[obj1] = "A"; table[obj2] = "B"; alert(table[obj1]); //displays B, because it can't differentiate between keys obj1 and obj2; they're both converted to string and just become something like "Object". Total fail, and makes type-safe serialization with references and cyclic-references intact difficult or non-performant in JavaScript. It's easy in Flash/AS3.
Well, the only way in JS we can validate by checking the equality or defining an equals method by something like this: Point.prototype.equals = function(obj) { return (obj instanceof Point) && (obj.x === this.x) && (obj.y === this.y); };
@Leo console.log({A:'B',C:'D'}[foo]) should give you A B.
@Leo The example seems wrong. for... in for a dictionary will loop over its keys, so Object.keys seems malplaced there. Object.keys returns an array of the keys of the dictionary, and for... in for an array loops over its "keys", which for an array are its indices, not its values.
|
440
var associativeArray = {};
associativeArray["one"] = "First";
associativeArray["two"] = "Second";
associativeArray["three"] = "Third";

If you are coming from an object-oriented language you should check this article.

1 Comment

You could also do this in fewer lines: var associativeArray = {"one" : "First", "two" : "second", "three" : "Third"}; Then associativeArray["one"] returns "First" and assocativeArray["four"] returns null.
187

All modern browsers support a JavaScript Map object. There are a couple of reasons that make using a Map better than using an object:

  • An object has a prototype (by default), so there are default keys in the map.
  • The keys of an object are strings (or symbols), where they can be any value for a Map.
  • You can get the size of a Map easily while you have to keep track of the size for an object.

Example:

var myMap = new Map();

var keyObj = {},
    keyFunc = function () {},
    keyString = "a string";

myMap.set(keyString, "value associated with 'a string'");
myMap.set(keyObj, "value associated with keyObj");
myMap.set(keyFunc, "value associated with keyFunc");

console.log(myMap.size);              // 3
console.log(myMap.get(keyString));    // "value associated with 'a string'"
console.log(myMap.get(keyObj));       // "value associated with keyObj"
console.log(myMap.get(keyFunc));      // "value associated with keyFunc"

If you want keys that are not referenced from other objects to be garbage collected, consider using a WeakMap instead of a Map.

7 Comments

Hopefully in a few years this will be the most voted for answer.
@CameronLee surely it will
This Map is barely useful when your key is an object but should be compared by value, not reference.
More than a year after this answer was written, it's still NOT true that "all modern browsers support Map." Only on the desktop can you count on at least basic Map support. Not on mobile devices. E.g., Android browser has no Map support at all. Even on the Desktop, some implementations are incomplete. For instance, IE11 still doesn't support enumerating via "for...of...", so if you want IE compatibility you have to use the disgusting .forEach kludge. Also, JSON.stringify() doesn't work for Map in any browser I've tried. Also initializers don't work in IE or Safari.
There is excellent browser support. Check again. In any case, this is quite easy to polyfill, so native browser support is a non-issue.
|
134

Unless you have a specific reason not to, just use a normal object. Object properties in JavaScript can be referenced using hashtable-style syntax:

var hashtable = {};
hashtable.foo = "bar";
hashtable['bar'] = "foo";

Both foo and bar elements can now then be referenced as:

hashtable['foo'];
hashtable['bar'];

// Or
hashtable.foo;
hashtable.bar;

Of course this does mean your keys have to be strings. If they're not strings they are converted internally to strings, so it may still work. Your mileage may vary.

10 Comments

Keys as integers caused me no problem. stackoverflow.com/questions/2380019/…
Jonas: bear in mind that your integers are converted to strings when the property is being set: var hash = {}; hash[1] = "foo"; alert(hash["1"]); alerts "foo".
What if one of your keys is "proto" or "parent"?
Note that Objects cannot be used as keys in JavaScript. Well, they can, but they're converted to their String representations, so any Object will end up as the exact same key. See @TimDown's jshashtable suggestion below.
This example is confusing because you're using foo and bar as both key and value in two instances. Much clearer to show that var dict = {}; dict.key1 = "val1"; dict["key2"] = "val2"; dict's key1 element can be referenced equivalently by both dict["key1"] and dict.key1.
|
50

Since every object in JavaScript behaves like - and is generally implemented as - a hashtable, I just go with that...

var hashSweetHashTable = {};

3 Comments

Downvoted because it doesn't show how to actually access values in the "hashtable".
I'm 9 years late (I didn't know much of anything about programming, let alone this site back then), but... What if you are trying to store points on a map, and need to see if something is already at a point on a map? In that case, you would be best using HashTable for this, looking up by coordinates (an object, not a string).
@MikeWarren if (hashSweetHashTable.foo) should enter the if block if foo is set.
22

In C# the code looks like:

Dictionary<string,int> dictionary = new Dictionary<string,int>();
dictionary.add("sample1", 1);
dictionary.add("sample2", 2);

or

var dictionary = new Dictionary<string, int> {
    {"sample1", 1},
    {"sample2", 2}
};

In JavaScript:

var dictionary = {
    "sample1": 1,
    "sample2": 2
}

A C# dictionary object contains useful methods, like dictionary.ContainsKey()

In JavaScript, we could use the hasOwnProperty like:

if (dictionary.hasOwnProperty("sample1"))
    console.log("sample1 key found and its value is"+ dictionary["sample1"]);

2 Comments

Upvote for me not having to write an answer about hasOwnProperty
var dictionary = { "hasOwnProperty": "where is your god now?" };
19

If you require your keys to be any object rather than just strings, then you could use my jshashtable.

4 Comments

How many hours did I spend stumbling around the fact that Objects can't really be used as keys for JS-style-Object-as-associative-arrays before I found this? Thank you, Tim.
Flash/AS3 Dictionary, along with most other languages, support object references as keys. JavaScript still hasn't implemented it yet, but I think it's in a future spec as a some kind of Map class. Again with the polyfills in the meantime; so much for standards. Oh, wait... finally in 2015, Map appears to have arrived: stackoverflow.com/a/30088129/88409, and is supported by "modern" browsers, lol: kangax.github.io/compat-table/es6/#Map (and not really widely supported). Only a decade behind AS3.
Tim, perhaps you should update jshashtable to use Map() where available.
@DaveBurton: Good plan. I shall do so as soon as I have some time.
11

Note:

Several years ago, I had implemented the following hashtable, which has had some features that were missing to the Map class. However, that's no longer the case — now, it's possible to iterate over the entries of a Map, get an array of its keys or values or both (these operations are implemented copying to a newly allocated array, though — that's a waste of memory and its time complexity will always be as slow as O(n)), remove specific items given their key, and clear the whole map.
Therefore, my hashtable implementation is only useful for compatibility purposes, in which case it'd be a saner approach to write a proper polyfill based on this.


function Hashtable() {

    this._map = new Map();
    this._indexes = new Map();
    this._keys = [];
    this._values = [];

    this.put = function(key, value) {
        var newKey = !this.containsKey(key);
        this._map.set(key, value);
        if (newKey) {
            this._indexes.set(key, this.length);
            this._keys.push(key);
            this._values.push(value);
        }
    };

    this.remove = function(key) {
        if (!this.containsKey(key))
            return;
        this._map.delete(key);
        var index = this._indexes.get(key);
        this._indexes.delete(key);
        this._keys.splice(index, 1);
        this._values.splice(index, 1);
    };

    this.indexOfKey = function(key) {
        return this._indexes.get(key);
    };

    this.indexOfValue = function(value) {
        return this._values.indexOf(value) != -1;
    };

    this.get = function(key) {
        return this._map.get(key);
    };

    this.entryAt = function(index) {

        var item = {};

        Object.defineProperty(item, "key", {
            value: this.keys[index],
            writable: false
        });

        Object.defineProperty(item, "value", {
            value: this.values[index],
            writable: false
        });

        return item;
    };

    this.clear = function() {

        var length = this.length;

        for (var i = 0; i < length; i++) {
            var key = this.keys[i];
            this._map.delete(key);
            this._indexes.delete(key);
        }

        this._keys.splice(0, length);
    };

    this.containsKey = function(key) {
        return this._map.has(key);
    };

    this.containsValue = function(value) {
        return this._values.indexOf(value) != -1;
    };

    this.forEach = function(iterator) {
        for (var i = 0; i < this.length; i++)
            iterator(this.keys[i], this.values[i], i);
    };

    Object.defineProperty(this, "length", {
        get: function() {
            return this._keys.length;
        }
    });

    Object.defineProperty(this, "keys", {
        get: function() {
            return this._keys;
        }
    });

    Object.defineProperty(this, "values", {
        get: function() {
            return this._values;
        }
    });

    Object.defineProperty(this, "entries", {
        get: function() {
            var entries = new Array(this.length);
            for (var i = 0; i < entries.length; i++)
                entries[i] = this.entryAt(i);
            return entries;
        }
    });
}

Documentation of the class Hashtable

Methods:

  • get(key)

    Returns the value associated to the specified key.

    Parameters:
    key: The key from which to retrieve the value.


  • put(key, value)

    Associates the specified value to the specified key.

    Parameters:
    key: The key to which associate the value.
    value: The value to associate to the key.


  • remove(key)

    Removes the specified key, together with the value associated to it.

    Parameters:
    key: The key to remove.


  • clear()

    Clears the whole hashtable, by removing all its entries.


  • indexOfKey(key)

    Returns the index of the specified key, according to the order entries have been added.

    Parameters:
    key: The key of which to get the index.


  • indexOfValue(value)

    Returns the index of the specified value, according to the order entries have been added.

    Parameters:
    value: The value of which to get the index.

    Remarks:
    Values are compared by identity.


  • entryAt(index)

    Returns an object with a key and a value properties, representing the entry at the specified index.

    Parameters:
    index: The index of the entry to get.


  • containsKey(key)

    Returns whether the hashtable contains the specified key.

    Parameters: key: The key to look for.


  • containsValue(value)

    Returns whether the hashtable contains the specified value.

    Parameters:
    value: The value to look for.


  • forEach(iterator)

    Iterates through all the entries in the hashtable, calling specified iterator.

    Parameters:
    iterator: A method with three parameters, key, value and index, where index represents the index of the entry according to the order it's been added.

Properties:

  • length (Read-only)

    Gets the count of the entries in the hashtable.

  • keys (Read-only)

    Gets an array of all the keys in the hashtable.

  • values (Read-only)

    Gets an array of all the values in the hashtable.

  • entries (Read-only)

    Gets an array of all the entries in the hashtable. They're represented the same as the method entryAt().

Comments

6
function HashTable() {
    this.length = 0;
    this.items = new Array();
    for (var i = 0; i < arguments.length; i += 2) {
        if (typeof (arguments[i + 1]) != 'undefined') {
            this.items[arguments[i]] = arguments[i + 1];
            this.length++;
        }
    }

    this.removeItem = function (in_key) {
        var tmp_previous;
        if (typeof (this.items[in_key]) != 'undefined') {
            this.length--;
            var tmp_previous = this.items[in_key];
            delete this.items[in_key];
        }

        return tmp_previous;
    }

    this.getItem = function (in_key) {
        return this.items[in_key];
    }

    this.setItem = function (in_key, in_value) {
        var tmp_previous;
        if (typeof (in_value) != 'undefined') {
            if (typeof (this.items[in_key]) == 'undefined') {
                this.length++;
            } else {
                tmp_previous = this.items[in_key];
            }

            this.items[in_key] = in_value;
        }

        return tmp_previous;
    }

    this.hasItem = function (in_key) {
        return typeof (this.items[in_key]) != 'undefined';
    }

    this.clear = function () {
        for (var i in this.items) {
            delete this.items[i];
        }

        this.length = 0;
    }
}

3 Comments

For people who are down voting this, can you please comment why? This answer was posted in 2011 and not in current date.
I didn't down-vote but... you should not use an array as an object. Not 100% sure if this was your intent. Use slice on arrays not delete to re-index; delete is ok but will set to undefined -- better to be explicit; use = undefined on an object too b/c it's faster (but more memory). In short: always use an object: {} not an array: [] or new Array() if you intend to have string keys otherwise the js engine has a problem -- it will either see 2 types for 1 variable which means no optimization or it will run with array and realize it has to change to object (possible re-allocation).
Just like with Alex Hawkins's answer, please provide some explanation why this rather complex looking code is actually useful and better than the other shorter answers given here.
2

https://gist.github.com/alexhawkins/f6329420f40e5cafa0a4

var HashTable = function() {
  this._storage = [];
  this._count = 0;
  this._limit = 8;
}


HashTable.prototype.insert = function(key, value) {

  // Create an index for our storage location by passing
  // it through our hashing function
  var index = this.hashFunc(key, this._limit);

  // Retrieve the bucket at this particular index in
  // our storage, if one exists
  //[[ [k,v], [k,v], [k,v] ] , [ [k,v], [k,v] ]  [ [k,v] ] ]
  var bucket = this._storage[index]

  // Does a bucket exist or do we get undefined
  // when trying to retrieve said index?
  if (!bucket) {
    // Create the bucket
    var bucket = [];
    // Insert the bucket into our hashTable
    this._storage[index] = bucket;
  }

  var override = false;

  // Now iterate through our bucket to see if there are any conflicting
  // key value pairs within our bucket. If there are any, override them.
  for (var i = 0; i < bucket.length; i++) {
    var tuple = bucket[i];
    if (tuple[0] === key) {

      // Override value stored at this key
      tuple[1] = value;
      override = true;
    }
  }

  if (!override) {
    // Create a new tuple in our bucket.
    // Note that this could either be the new empty bucket we created above
    // or a bucket with other tupules with keys that are different than
    // the key of the tuple we are inserting. These tupules are in the same
    // bucket because their keys all equate to the same numeric index when
    // passing through our hash function.
    bucket.push([key, value]);
    this._count++

    // Now that we've added our new key/val pair to our storage
    // let's check to see if we need to resize our storage
    if (this._count > this._limit * 0.75) {
      this.resize(this._limit * 2);
    }
  }
  return this;
};


HashTable.prototype.remove = function(key) {
  var index = this.hashFunc(key, this._limit);
  var bucket = this._storage[index];
  if (!bucket) {
    return null;
  }

  // Iterate over the bucket
  for (var i = 0; i < bucket.length; i++) {
    var tuple = bucket[i];

    // Check to see if key is inside bucket
    if (tuple[0] === key) {

      // If it is, get rid of this tuple
      bucket.splice(i, 1);
      this._count--;
      if (this._count < this._limit * 0.25) {
        this._resize(this._limit / 2);
      }
      return tuple[1];
    }
  }
};


HashTable.prototype.retrieve = function(key) {
  var index = this.hashFunc(key, this._limit);
  var bucket = this._storage[index];

  if (!bucket) {
    return null;
  }

  for (var i = 0; i < bucket.length; i++) {
    var tuple = bucket[i];
    if (tuple[0] === key) {
      return tuple[1];
    }
  }

  return null;
};


HashTable.prototype.hashFunc = function(str, max) {
  var hash = 0;
  for (var i = 0; i < str.length; i++) {
    var letter = str[i];
    hash = (hash << 5) + letter.charCodeAt(0);
    hash = (hash & hash) % max;
  }
  return hash;
};


HashTable.prototype.resize = function(newLimit) {
  var oldStorage = this._storage;

  this._limit = newLimit;
  this._count = 0;
  this._storage = [];

  oldStorage.forEach(function(bucket) {
    if (!bucket) {
      return;
    }
    for (var i = 0; i < bucket.length; i++) {
      var tuple = bucket[i];
      this.insert(tuple[0], tuple[1]);
    }
  }.bind(this));
};


HashTable.prototype.retrieveAll = function() {
  console.log(this._storage);
  //console.log(this._limit);
};

/******************************TESTS*******************************/

var hashT = new HashTable();

hashT.insert('Alex Hawkins', '510-599-1930');
//hashT.retrieve();
//[ , , , [ [ 'Alex Hawkins', '510-599-1930' ] ] ]
hashT.insert('Boo Radley', '520-589-1970');
//hashT.retrieve();
//[ , [ [ 'Boo Radley', '520-589-1970' ] ], , [ [ 'Alex Hawkins', '510-599-1930' ] ] ]
hashT.insert('Vance Carter', '120-589-1970').insert('Rick Mires', '520-589-1970').insert('Tom Bradey', '520-589-1970').insert('Biff Tanin', '520-589-1970');
//hashT.retrieveAll();
/*
[ ,
  [ [ 'Boo Radley', '520-589-1970' ],
    [ 'Tom Bradey', '520-589-1970' ] ],
  ,
  [ [ 'Alex Hawkins', '510-599-1930' ],
    [ 'Rick Mires', '520-589-1970' ] ],
  ,
  ,
  [ [ 'Biff Tanin', '520-589-1970' ] ] ]
*/

// Override example (Phone Number Change)
//
hashT.insert('Rick Mires', '650-589-1970').insert('Tom Bradey', '818-589-1970').insert('Biff Tanin', '987-589-1970');
//hashT.retrieveAll();

/*
[ ,
  [ [ 'Boo Radley', '520-589-1970' ],
    [ 'Tom Bradey', '818-589-1970' ] ],
  ,
  [ [ 'Alex Hawkins', '510-599-1930' ],
    [ 'Rick Mires', '650-589-1970' ] ],
  ,
  ,
  [ [ 'Biff Tanin', '987-589-1970' ] ] ]

*/

hashT.remove('Rick Mires');
hashT.remove('Tom Bradey');
//hashT.retrieveAll();

/*
[ ,
  [ [ 'Boo Radley', '520-589-1970' ] ],
  ,
  [ [ 'Alex Hawkins', '510-599-1930' ] ],
  ,
  ,
  [ [ 'Biff Tanin', '987-589-1970' ] ] ]


*/

hashT.insert('Dick Mires', '650-589-1970').insert('Lam James', '818-589-1970').insert('Ricky Ticky Tavi', '987-589-1970');
hashT.retrieveAll();


/* NOTICE HOW THE HASH TABLE HAS NOW DOUBLED IN SIZE UPON REACHING 75% CAPACITY, i.e. 6/8. It is now size 16.
 [,
  ,
  [ [ 'Vance Carter', '120-589-1970' ] ],
  [ [ 'Alex Hawkins', '510-599-1930' ],
    [ 'Dick Mires', '650-589-1970' ],
    [ 'Lam James', '818-589-1970' ] ],
  ,
  ,
  ,
  ,
  ,
  [ [ 'Boo Radley', '520-589-1970' ],
    [ 'Ricky Ticky Tavi', '987-589-1970' ] ],
  ,
  ,
  ,
  ,
  [ [ 'Biff Tanin', '987-589-1970' ] ] ]

*/

console.log(hashT.retrieve('Lam James'));  // 818-589-1970
console.log(hashT.retrieve('Dick Mires')); // 650-589-1970
console.log(hashT.retrieve('Ricky Ticky Tavi')); //987-589-1970
console.log(hashT.retrieve('Alex Hawkins')); // 510-599-1930
console.log(hashT.retrieve('Lebron James')); // null

2 Comments

Looks nice. Now, please also explain WHY this is useful and may be better suited than all the other answers here.
Isn't storing the data in an array against the whole point of hash tables?
2

You can create one using like the following:

var dictionary = { Name:"Some Programmer", Age:24, Job:"Writing Programs"  };

// Iterate over using keys
for (var key in dictionary) {
  console.log("Key: " + key + " , " + "Value: "+ dictionary[key]);
}

// Access a key using object notation:
console.log("Her name is: " + dictionary.Name)

Comments

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.