Front cover image for Data Clustering : Algorithms and Applications

Data Clustering : Algorithms and Applications

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization. Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation. In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process-including how to verify the quality of the underlying clusters-through supervision, human intervention, or the automated generation of alternative clusters
eBook, English, 2018
First edition View all formats and editions
Chapman and Hall/CRC, Boca Raton, FL, 2018
1 online resource (652 pages) : 138 illustrations, text file, PDF
9781315373515, 9781315360416, 1315373513, 1315360411
1110589522
Print version:
An Introduction to Cluster Analysis. Feature Selection for Clustering: A Review. Probabilistic Models for Clustering. A Survey of Partitional and Hierarchical Clustering Algorithms. Density-Based Clustering. Grid-Based Clustering. Non-Negative Matrix Factorizations for Clustering: A Survey. Spectral Clustering. Clustering High-Dimensional Data. A Survey of Stream Clustering Algorithms. Big Data Clustering. Clustering Categorical Data. Document Clustering: The Next Frontier. Clustering Multimedia Data. Time Series Data Clustering. Clustering Biological Data. Network Clustering. A Survey of Uncertain Data Clustering Algorithms. Concepts of Visual and Interactive Clustering. Semi-Supervised Clustering. Alternative Clustering Analysis: A Review. Cluster Ensembles: Theory and Applications. Clustering Validation Measures. Educational and Software Resources for Data Clustering. Index.