OpenInference PydanticAI Instrumentation
Project description
OpenInference PydanticAI
Python auto-instrumentation library for PydanticAI. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize Phoenix.
Installation
pip install openinference-instrumentation-pydantic-ai
Quickstart
This quickstart shows you how to instrument your PydanticAI agents.
Install required packages.
pip install pydantic-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp
Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006
. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)
phoenix serve
Here's a simple example that demonstrates how to use PydanticAI with OpenInference instrumentation:
import os
from pydantic import BaseModel
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.pydantic_ai import OpenInferenceSpanProcessor
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
# Set up the tracer provider
tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)
# Add the OpenInference span processor
endpoint = "http://127.0.0.1:6006/v1/traces"
exporter = OTLPSpanExporter(endpoint=endpoint)
tracer_provider.add_span_processor(OpenInferenceSpanProcessor())
tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))
# Define your Pydantic model
class LocationModel(BaseModel):
city: str
country: str
# Create and configure the agent
model = OpenAIModel("gpt-4", provider=OpenAIProvider())
agent = Agent(model, output_type=LocationModel, instrument=True)
# Run the agent
result = agent.run_sync("The windy city in the US of A.")
print(result)
This example:
- Sets up OpenTelemetry tracing with Phoenix
- Defines a simple Pydantic model for location data
- Creates a PydanticAI agent with instrumentation enabled
- Runs a query and gets structured output
The traces will be visible in the Phoenix UI at http://localhost:6006
.
More Info
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file openinference_instrumentation_pydantic_ai-0.1.3.tar.gz
.
File metadata
- Download URL: openinference_instrumentation_pydantic_ai-0.1.3.tar.gz
- Upload date:
- Size: 13.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
fff0ec9f986f1215d3579910abd18df12262197436f6b142a0fdd783310f22a4
|
|
MD5 |
0cba2177b85569b59b9b64ec5f30aced
|
|
BLAKE2b-256 |
e687392a9b5b4913f3f05daa7482fd713643f4e64bdcb76e7152b0f51dc758c8
|
File details
Details for the file openinference_instrumentation_pydantic_ai-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: openinference_instrumentation_pydantic_ai-0.1.3-py3-none-any.whl
- Upload date:
- Size: 14.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
fe130ae85aecbe64358c5d13a80f22746f1b545b4d8b93a2bac6e0b20e391b85
|
|
MD5 |
74c09da7f473b139b84f440ea7ad32e8
|
|
BLAKE2b-256 |
7ed4638fc42d3ca69d735f81c3405c1b61b9a85c4421d2e34e3b280097f85d43
|