Skip to main content

OpenInference PydanticAI Instrumentation

Project description

OpenInference PydanticAI

pypi

Python auto-instrumentation library for PydanticAI. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize Phoenix.

Installation

pip install openinference-instrumentation-pydantic-ai

Quickstart

This quickstart shows you how to instrument your PydanticAI agents.

Install required packages.

pip install pydantic-ai arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start Phoenix in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address. (Phoenix does not send data over the internet. It only operates locally on your machine.)

phoenix serve

Here's a simple example that demonstrates how to use PydanticAI with OpenInference instrumentation:

import os
from pydantic import BaseModel
from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.pydantic_ai import OpenInferenceSpanProcessor
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

# Set up the tracer provider
tracer_provider = TracerProvider()
trace.set_tracer_provider(tracer_provider)

# Add the OpenInference span processor
endpoint = "http://127.0.0.1:6006/v1/traces"
exporter = OTLPSpanExporter(endpoint=endpoint)
tracer_provider.add_span_processor(OpenInferenceSpanProcessor())
tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))


# Define your Pydantic model
class LocationModel(BaseModel):
    city: str
    country: str

# Create and configure the agent
model = OpenAIModel("gpt-4", provider=OpenAIProvider())
agent = Agent(model, output_type=LocationModel, instrument=True)

# Run the agent
result = agent.run_sync("The windy city in the US of A.")
print(result)

This example:

  1. Sets up OpenTelemetry tracing with Phoenix
  2. Defines a simple Pydantic model for location data
  3. Creates a PydanticAI agent with instrumentation enabled
  4. Runs a query and gets structured output

The traces will be visible in the Phoenix UI at http://localhost:6006.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.3.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.3.tar.gz
Algorithm Hash digest
SHA256 fff0ec9f986f1215d3579910abd18df12262197436f6b142a0fdd783310f22a4
MD5 0cba2177b85569b59b9b64ec5f30aced
BLAKE2b-256 e687392a9b5b4913f3f05daa7482fd713643f4e64bdcb76e7152b0f51dc758c8

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_pydantic_ai-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_pydantic_ai-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 fe130ae85aecbe64358c5d13a80f22746f1b545b4d8b93a2bac6e0b20e391b85
MD5 74c09da7f473b139b84f440ea7ad32e8
BLAKE2b-256 7ed4638fc42d3ca69d735f81c3405c1b61b9a85c4421d2e34e3b280097f85d43

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page