Skip to main content

OpenInference OpenAI Instrumentation

Project description

OpenInference OpenAI Instrumentation

pypi

Python auto-instrumentation library for OpenAI's python SDK.

The traces emitted by this instrumentation are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix

Installation

pip install openinference-instrumentation-openai

Quickstart

In this example we will instrument a small program that uses OpenAI and observe the traces via arize-phoenix.

Install packages.

pip install openinference-instrumentation-openai "openai>=1.26" arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the phoenix server so that it is ready to collect traces. The Phoenix server runs entirely on your machine and does not send data over the internet.

python -m phoenix.server.main serve

In a python file, setup the OpenAIInstrumentor and configure the tracer to send traces to Phoenix.

import openai
from openinference.instrumentation.openai import OpenAIInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
# Optionally, you can also print the spans to the console.
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)


if __name__ == "__main__":
    client = openai.OpenAI()
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": "Write a haiku."}],
        max_tokens=20,
        stream=True,
        stream_options={"include_usage": True},
    )
    for chunk in response:
        if chunk.choices and (content := chunk.choices[0].delta.content):
            print(content, end="")

Since we are using OpenAI, we must set the OPENAI_API_KEY environment variable to authenticate with the OpenAI API.

export OPENAI_API_KEY=your-api-key

Now simply run the python file and observe the traces in Phoenix.

python your_file.py

FAQ

Q: How to get token counts when streaming?

A: To get token counts when streaming, install openai>=1.26 and set stream_options={"include_usage": True} when calling create. See the example shown above. For more info, see here.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openinference_instrumentation_openai-0.1.30.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file openinference_instrumentation_openai-0.1.30.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.30.tar.gz
Algorithm Hash digest
SHA256 b5ef3576433900ae71f328ca771905bb1392f7ad6c3dc0c0b942ceb138f091c3
MD5 f5549efd2bc29e0aec1e59b41b07fb7a
BLAKE2b-256 6514d72575256fe8eb511ed1d052ea3272fcc46eaa7d61adaf1043090a2ad213

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_openai-0.1.30-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_openai-0.1.30-py3-none-any.whl
Algorithm Hash digest
SHA256 de0ac47405e7f4a94bd67b8ca0512e109c97bee4d37023d8eab7cbb421705f29
MD5 ce8871c77fcb86ce73d3a2313ac115bd
BLAKE2b-256 b3b96026fb57c1856ce71e02b35fe9c8a40563abe3eacab2776532c88325c6b5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page