Skip to main content

OpenInference liteLLM Instrumentation

Project description

OpenInference LiteLLM Instrumentation

LiteLLM allows developers to call all LLM APIs using the openAI format. LiteLLM Proxy is a proxy server to call 100+ LLMs in OpenAI format. Both are supported by this auto-instrumentation.

This package implements OpenInference tracing for the following LiteLLM functions:

  • completion()
  • acompletion()
  • completion_with_retries()
  • embedding()
  • aembedding()
  • image_generation()
  • aimage_generation()

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize Phoenix.

Installation

pip install openinference-instrumentation-litellm

Quickstart

In a notebook environment (jupyter, colab, etc.) install openinference-instrumentation-litellm if you haven't already as well as arize-phoenix and litellm.

pip install openinference-instrumentation-litellm arize-phoenix litellm

First, import dependencies required to autoinstrument liteLLM and set up phoenix as an collector for OpenInference traces.

import litellm
import phoenix as px

from openinference.instrumentation.litellm import LiteLLMInstrumentor

from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

Next, we'll start a phoenix server and set it as a collector.

session = px.launch_app()
endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))

Set up any API keys needed in you API calls. For example:

import os
os.environ["OPENAI_API_KEY"] = "PASTE_YOUR_API_KEY_HERE"

Instrumenting LiteLLM is simple:

LiteLLMInstrumentor().instrument(tracer_provider=tracer_provider)

Now, all calls to LiteLLM functions are instrumented and can be viewed in the phoenix UI.

completion_response = litellm.completion(model="gpt-3.5-turbo", 
                   messages=[{"content": "What's the capital of China?", "role": "user"}])
print(completion_response)
acompletion_response = await litellm.acompletion(
            model="gpt-3.5-turbo",
            messages=[{ "content": "Hello, I want to bake a cake","role": "user"},
                      { "content": "Hello, I can pull up some recipes for cakes.","role": "assistant"},
                      { "content": "No actually I want to make a pie","role": "user"},],
            temperature=0.7,
            max_tokens=20
        )
print(acompletion_response)
embedding_response = litellm.embedding(model='text-embedding-ada-002', input=["good morning!"])
print(embedding_response)
image_gen_response = litellm.image_generation(model='dall-e-2', prompt="cute baby otter")
print(image_gen_response)

You can also uninstrument the functions as follows

LiteLLMInstrumentor().uninstrument(tracer_provider=tracer_provider)

Now any liteLLM function calls you make will not send traces to Phoenix until instrumented again

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openinference_instrumentation_litellm-0.1.22.tar.gz (17.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file openinference_instrumentation_litellm-0.1.22.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_litellm-0.1.22.tar.gz
Algorithm Hash digest
SHA256 fc4c622c77af67f5ad0d70f9ce0aada25174c1e2a699ed190e98e5e5dba5eeab
MD5 230c7c7f554694c6f50b6c8e773f5151
BLAKE2b-256 864d4c309330202596f30c4558ff85441fea57db1133476355a2efada1d31f93

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_litellm-0.1.22-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_litellm-0.1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 cb4d6760406df86ab238df5a637a2e37bc9de7979c5b0c2ef10f6d2ff3a86c43
MD5 fd5c8d8a92bd82dcad2dcac033707874
BLAKE2b-256 65110c3811b7e4eece09ab160ef6cd437a7544c2f37e7e5a367da2c199287eeb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page