Skip to main content

OpenInference LangChain Instrumentation

Project description

OpenInference LangChain Instrumentation

Python auto-instrumentation library for LangChain.

These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as arize-phoenix.

pypi

Installation

pip install openinference-instrumentation-langchain

Quickstart

Install packages needed for this demonstration.

pip install openinference-instrumentation-langchain langchain arize-phoenix opentelemetry-sdk opentelemetry-exporter-otlp

Start the Phoenix app in the background as a collector. By default, it listens on http://localhost:6006. You can visit the app via a browser at the same address.

The Phoenix app does not send data over the internet. It only operates locally on your machine.

python -m phoenix.server.main serve

The following Python code sets up the LangChainInstrumentor to trace langchain and send the traces to Phoenix at the endpoint shown below.

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from openinference.instrumentation.langchain import LangChainInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import ConsoleSpanExporter, SimpleSpanProcessor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = trace_sdk.TracerProvider()
trace_api.set_tracer_provider(tracer_provider)
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
tracer_provider.add_span_processor(SimpleSpanProcessor(ConsoleSpanExporter()))

LangChainInstrumentor().instrument()

To demonstrate langchain tracing, we'll make a simple chain to tell a joke. First, configure your OpenAI credentials.

import os

os.environ["OPENAI_API_KEY"] = "<your openai key>"

Now we can create a chain and run it.

prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
llm = LLMChain(llm=OpenAI(), prompt=prompt, metadata={"category": "jokes"})
completion = llm.predict(adjective="funny", metadata={"variant": "funny"})
print(completion)

Visit the Phoenix app at http://localhost:6006 to see the traces.

More Info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file openinference_instrumentation_langchain-0.1.43.tar.gz.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.43.tar.gz
Algorithm Hash digest
SHA256 18b5ac3ba52fcb85a576dd94175e025c6cbacce9cb2619a8f8b281b2c30e06cb
MD5 80ce3d29f1f42c7526e6a440175424a9
BLAKE2b-256 6984f85ea5c4b73ee6570f5f4a0a247243fc08cde8ed3b5c4ae40df7b9580c38

See more details on using hashes here.

File details

Details for the file openinference_instrumentation_langchain-0.1.43-py3-none-any.whl.

File metadata

File hashes

Hashes for openinference_instrumentation_langchain-0.1.43-py3-none-any.whl
Algorithm Hash digest
SHA256 66645839eac2c3cf986bc917ef309dc89c468f3bb0a56b20eaba6c89b8b44e9a
MD5 b0e9a44d3fa873cfced7bb60a9649c8e
BLAKE2b-256 27b108b85cf9af64d8e994e554edda3898af5563b9b6073f6690a463af67338d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page