Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Oct 2;273(40):26061-8.
doi: 10.1074/jbc.273.40.26061.

Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2

Affiliations
Free article

Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2

K Iwabuchi et al. J Biol Chem. .
Free article

Abstract

p53 is a tumor suppressor protein that controls cell proliferation by regulating the expression of growth control genes. In a previous study, we identified two proteins, 53BP1 and 53BP2, that are able to bind to wild type but not to mutant p53 via the DNA-binding domain of p53. We isolated cDNAs expressing a full-length human 53BP1 clone, which predicts a protein of 1972 residues that can be detected in the H358 human lung carcinoma cell line. The 53BP1 and 53BP2 genes were mapped to chromosomes 15q15-21 and 1q41-42, respectively. Immunofluorescence studies showed three types of staining patterns for 53BP1 as follows: both cytoplasmic and nuclear, homogeneous nuclear, and a nuclear dot pattern. In contrast, 53BP2 localized exclusively to the cytoplasm, and this pattern did not change upon coexpression of wild type p53. Although our previous study revealed that p53 is not able to bind simultaneously to either 53BP1 or 53BP2 and to DNA carrying a consensus binding site, both 53BP1 and 53BP2 enhanced p53-mediated transcriptional activation and induced the expression of a p53-dependent protein, suggesting that these proteins might function in signal transduction pathways to promote p53 activity.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Associated data