login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 62nd year, we have over 390,000 sequences, and we’ve reached 12,000 citations (which often say “discovered thanks to the OEIS”).

A269835
Primes p of the form 2^k + 4*(-1)^k - 3.
1
2, 5, 17, 257, 65537, 549755813881
OFFSET
1,1
COMMENTS
a(7) has 216 digits (see b-file).
Fermat primes > 3 from A019434 are terms.
Corresponding values of k: 0, 2, 4, 8, 16, 39, 715, ....
Note that for k = 1, 2^k + 4*(-1)^k - 3 = -5.
For further k values, see A059609. (2^k-7 is divisible by 3 for even k.) - Jeppe Stig Nielsen, Nov 18 2019
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..10 (terms 1..7 from Jaroslav Krizek).
MATHEMATICA
Select[Table[2^k+4(-1)^k-3, {k, 0, 50}], Positive[#]&&PrimeQ[#]&] (* Harvey P. Dale, Sep 14 2019 *)
PROG
(Magma) [2] cat [2^k + 4*(-1)^k - 3: k in [2..300] | IsPrime(2^k + 4*(-1)^k - 3)];
(PARI) for (k=0, 40, my(j=2^k+4*(-1)^k-3); if(isprime(j), print1(j, ", "))) \\ Hugo Pfoertner, Nov 21 2019
CROSSREFS
Sequence in context: A269834 A290200 A132198 * A111635 A041455 A376184
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 06 2016
STATUS
approved