login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 62nd year, we have over 390,000 sequences, and we’ve reached 12,000 citations (which often say “discovered thanks to the OEIS”).

A251595
Distinct terms in A251416.
4
2, 3, 4, 5, 6, 7, 10, 11, 13, 17, 18, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
OFFSET
1,1
COMMENTS
A251417(n) gives number of repetitions of a(n) in A251416;
a(n) = prime(n-4) for n > 11 according to Bradley Klee's conjecture, empirically confirmed for the first 10000 primes;
equivalently: A098551(a(n)) = A251239(n-4) for n > 11.
LINKS
EXAMPLE
. n | a(n) | A151417(n) | A098551(a(n))
. ----+--------------+------------+--------------
. 1 | 2 | 1 | 2
. 2 | 3 | 1 | 3
. 3 | 4 = 2*2 | 1 | 4
. 4 | 5 | 5 | 9
. 5 | 6 = 2*3 | 1 | 10
. 6 | 7 | 5 | 15
. 7 | 10 = 2*5 | 1 | 16
. 8 | 11 | 6 | 22
. 9 | 13 | 1 | 23
. 10 | 17 | 7 | 30
. 11 | 18 = 2*3*3 | 1 | 31
. 12 | 19 | 12 | 43
. 13 | 23 | 8 | 51
. 14 | 29 | 10 | 61
. 15 | 31 | 1 | 62
. 16 | 37 | 17 | 79
. 17 | 41 | 8 | 87
. 18 | 43 | 1 | 88
. 19 | 47 | 13 | 101
. 20 | 53 | 13 | 114
. 21 | 59 | 13 | 127
. 22 | 61 | 5 | 132
. 23 | 67 | 10 | 142
. 24 | 71 | 11 | 153
. 25 | 73 | 5 | 158
The last column gives the position of a(n) in A098550.
PROG
(Haskell)
import Data.List (group)
a251595 n = a251595_list !! (n-1)
a251595_list = map head $ group a251416_list
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 05 2014
STATUS
approved