login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 62nd year, we have over 390,000 sequences, and we’ve reached 12,000 citations (which often say “discovered thanks to the OEIS”).

A226532
If n = Product_{i>0} prime(i)^e(i), then a(n) = Product_{i>0} prime(i)^(XOR_{j>=i} e(j)), where XOR is bitwise XOR.
3
1, 2, 6, 4, 30, 3, 210, 8, 36, 15, 2310, 24, 30030, 105, 5, 16, 510510, 72, 9699690, 120, 35, 1155, 223092870, 12, 900, 15015, 216, 840, 6469693230, 10, 200560490130, 32, 385, 255255, 7, 9, 7420738134810, 4849845, 5005, 60, 304250263527210, 70, 13082761331670030, 9240, 1080, 111546435, 614889782588491410
OFFSET
1,2
COMMENTS
This sequence is a permutation of the natural numbers.
The powers of 2 are the fixed points of this sequence.
a(prime(i)) = A002110(i) for any i > 0.
a(i^2) = a(i)^2 for any i > 0.
a(A019565(n)) = A019565(A006068(n)) for any n >= 0.
EXAMPLE
a(50) = a(2^1 * 3^0 * 5^2)
= 2^xor(1,0,2) * 3^xor(0,2) * 5^xor(2)
= 2^3 * 3^2 * 5^2
= 1800.
PROG
(Perl) # See Tek link.
(Haskell)
import Data.Bits (xor)
a226532 n = product $ zipWith (^)
a000040_list (scanr1 xor $ a067255_row n :: [Integer])
-- Reinhard Zumkeller, Jun 11 2013
CROSSREFS
Cf. A006068.
Cf. A226569 (inverse), A067255, A000040.
Sequence in context: A092399 A039656 A263326 * A335049 A006233 A373985
KEYWORD
nonn
AUTHOR
Paul Tek, Jun 10 2013
STATUS
approved