login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 62nd year, we have over 390,000 sequences, and we’ve reached 12,000 citations (which often say “discovered thanks to the OEIS”).

A006686
Octavan primes: primes of the form p = x^8 + y^8.
(Formerly M5428)
9
2, 257, 65537, 2070241, 100006561, 435746497, 815730977, 832507937, 1475795617, 2579667841, 4338014017, 5110698017, 6975822977, 16983628577, 17995718017, 25605764801, 32575757441, 37822859617, 37839636577, 54875880097, 54876264161, 103910985281, 110081078977
OFFSET
1,1
COMMENTS
The largest known octavan prime is currently the largest known generalized Fermat prime: The 1353265-digit 145310^262144+1 = (145310^32768)^8+1^8, found by Ricky L Hubbard. - Jens Kruse Andersen, Mar 20 2011
REFERENCES
A. J. C. Cunningham, High quartan factorisations and primes, Messenger of Mathematics, 36, 11 (1907), pp. 145-174.
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
EXAMPLE
65537 = 1^8 + 4^8.
MATHEMATICA
lst={}; Do[If[PrimeQ[a^8+b^8], AppendTo[lst, a^8+b^8]], {a, 100}, {b, a, 100}]; Sort[lst] (* T. D. Noe *)
Union[Select[Total/@(Tuples[Range[30], 2]^8), PrimeQ]] (* Harvey P. Dale, Apr 06 2013 *)
PROG
(PARI) list(lim)=my(v=List([2]), x8, t); for(x=1, sqrtnint(lim\=1, 8), x8=x^8; forstep(y=1+x%2, min(sqrtnint(lim-x8, 8), x-1), 2, if(isprime(t=x8+y^8), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Aug 20 2017
CROSSREFS
Intersection of A003380 and A000040. Subsequence of A291206.
Sequence in context: A060890 A294275 A085316 * A100269 A258805 A327777
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Jud McCranie, Jan 04 2001
STATUS
approved