Skip to content

API Reference

High Level API

High-level Python bindings for llama.cpp.

llama_cpp.Llama

High-level Python wrapper for a llama.cpp model.

Source code in llama_cpp/llama.py
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
class Llama:
    """High-level Python wrapper for a llama.cpp model."""

    __backend_initialized = False

    def __init__(
        self,
        model_path: str,
        *,
        # Model Params
        n_gpu_layers: int = 0,
        split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER,
        main_gpu: int = 0,
        tensor_split: Optional[List[float]] = None,
        rpc_servers: Optional[str] = None,
        vocab_only: bool = False,
        use_mmap: bool = True,
        use_mlock: bool = False,
        kv_overrides: Optional[Dict[str, Union[bool, int, float, str]]] = None,
        # Context Params
        seed: int = llama_cpp.LLAMA_DEFAULT_SEED,
        n_ctx: int = 512,
        n_batch: int = 512,
        n_ubatch: int = 512,
        n_threads: Optional[int] = None,
        n_threads_batch: Optional[int] = None,
        rope_scaling_type: Optional[
            int
        ] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
        pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
        rope_freq_base: float = 0.0,
        rope_freq_scale: float = 0.0,
        yarn_ext_factor: float = -1.0,
        yarn_attn_factor: float = 1.0,
        yarn_beta_fast: float = 32.0,
        yarn_beta_slow: float = 1.0,
        yarn_orig_ctx: int = 0,
        logits_all: bool = False,
        embedding: bool = False,
        offload_kqv: bool = True,
        flash_attn: bool = False,
        # Sampling Params
        no_perf: bool = False,
        last_n_tokens_size: int = 64,
        # LoRA Params
        lora_base: Optional[str] = None,
        lora_scale: float = 1.0,
        lora_path: Optional[str] = None,
        # Backend Params
        numa: Union[bool, int] = False,
        # Chat Format Params
        chat_format: Optional[str] = None,
        chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None,
        # Speculative Decoding
        draft_model: Optional[LlamaDraftModel] = None,
        # Tokenizer Override
        tokenizer: Optional[BaseLlamaTokenizer] = None,
        # KV cache quantization
        type_k: Optional[int] = None,
        type_v: Optional[int] = None,
        # Misc
        spm_infill: bool = False,
        verbose: bool = True,
        # Extra Params
        **kwargs,  # type: ignore
    ):
        """Load a llama.cpp model from `model_path`.

        Examples:
            Basic usage

            >>> import llama_cpp
            >>> model = llama_cpp.Llama(
            ...     model_path="path/to/model",
            ... )
            >>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])
            the lazy dog

            Loading a chat model

            >>> import llama_cpp
            >>> model = llama_cpp.Llama(
            ...     model_path="path/to/model",
            ...     chat_format="llama-2",
            ... )
            >>> print(model.create_chat_completion(
            ...     messages=[{
            ...         "role": "user",
            ...         "content": "what is the meaning of life?"
            ...     }]
            ... ))

        Args:
            model_path: Path to the model.
            n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
            split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.
            main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_MODE_LAYER: ignored
            tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.
            rpc_servers: Comma separated list of RPC servers to use for offloading
            vocab_only: Only load the vocabulary no weights.
            use_mmap: Use mmap if possible.
            use_mlock: Force the system to keep the model in RAM.
            kv_overrides: Key-value overrides for the model.
            seed: RNG seed, -1 for random
            n_ctx: Text context, 0 = from model
            n_batch: Prompt processing maximum batch size
            n_ubatch: Physical batch size
            n_threads: Number of threads to use for generation
            n_threads_batch: Number of threads to use for batch processing
            rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054
            pooling_type: Pooling type, from `enum llama_pooling_type`.
            rope_freq_base: RoPE base frequency, 0 = from model
            rope_freq_scale: RoPE frequency scaling factor, 0 = from model
            yarn_ext_factor: YaRN extrapolation mix factor, negative = from model
            yarn_attn_factor: YaRN magnitude scaling factor
            yarn_beta_fast: YaRN low correction dim
            yarn_beta_slow: YaRN high correction dim
            yarn_orig_ctx: YaRN original context size
            logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
            embedding: Embedding mode only.
            offload_kqv: Offload K, Q, V to GPU.
            flash_attn: Use flash attention.
            no_perf: Measure performance timings.
            last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
            lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
            lora_path: Path to a LoRA file to apply to the model.
            numa: numa policy
            chat_format: String specifying the chat format to use when calling create_chat_completion.
            chat_handler: Optional chat handler to use when calling create_chat_completion.
            draft_model: Optional draft model to use for speculative decoding.
            tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.
            verbose: Print verbose output to stderr.
            type_k: KV cache data type for K (default: f16)
            type_v: KV cache data type for V (default: f16)
            spm_infill: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.

        Raises:
            ValueError: If the model path does not exist.

        Returns:
            A Llama instance.
        """
        self.verbose = verbose
        self._stack = contextlib.ExitStack()

        set_verbose(verbose)

        if not Llama.__backend_initialized:
            with suppress_stdout_stderr(disable=verbose):
                llama_cpp.llama_backend_init()
            Llama.__backend_initialized = True

        if isinstance(numa, bool):
            self.numa = (
                llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE
                if numa
                else llama_cpp.GGML_NUMA_STRATEGY_DISABLED
            )
        else:
            self.numa = numa

        if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED:
            with suppress_stdout_stderr(disable=verbose):
                llama_cpp.llama_numa_init(self.numa)

        self.model_path = model_path

        # Model Params
        self.model_params = llama_cpp.llama_model_default_params()
        self.model_params.n_gpu_layers = (
            0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers
        )  # 0x7FFFFFFF is INT32 max, will be auto set to all layers
        self.model_params.split_mode = split_mode
        self.model_params.main_gpu = main_gpu
        if rpc_servers is not None:
            self.model_params.rpc_servers = rpc_servers.encode("utf-8")
            self._rpc_servers = rpc_servers
        else:
            self._rpc_servers = None
        self.tensor_split = tensor_split
        self._c_tensor_split = None
        if self.tensor_split is not None:
            if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES:
                raise ValueError(
                    f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}"
                )
            # Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
            FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES
            self._c_tensor_split = FloatArray(
                *tensor_split  # type: ignore
            )  # keep a reference to the array so it is not gc'd
            self.model_params.tensor_split = self._c_tensor_split
        self.model_params.vocab_only = vocab_only
        self.model_params.use_mmap = use_mmap if lora_path is None else False
        self.model_params.use_mlock = use_mlock

        # kv_overrides is the original python dict
        self.kv_overrides = kv_overrides
        if kv_overrides is not None:
            # _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structs
            kvo_array_len = len(kv_overrides) + 1  # for sentinel element
            self._kv_overrides_array = (
                llama_cpp.llama_model_kv_override * kvo_array_len
            )()

            for i, (k, v) in enumerate(kv_overrides.items()):
                self._kv_overrides_array[i].key = k.encode("utf-8")
                if isinstance(v, bool):
                    self._kv_overrides_array[
                        i
                    ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL
                    self._kv_overrides_array[i].value.val_bool = v
                elif isinstance(v, int):
                    self._kv_overrides_array[
                        i
                    ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT
                    self._kv_overrides_array[i].value.val_i64 = v
                elif isinstance(v, float):
                    self._kv_overrides_array[
                        i
                    ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT
                    self._kv_overrides_array[i].value.val_f64 = v
                elif isinstance(v, str):  # type: ignore
                    v_bytes = v.encode("utf-8")
                    if len(v_bytes) > 128:  # TODO: Make this a constant
                        raise ValueError(f"Value for {k} is too long: {v}")
                    v_bytes = v_bytes.ljust(128, b"\0")
                    self._kv_overrides_array[
                        i
                    ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_STR
                    # copy min(v_bytes, 128) to str_value
                    address = typing.cast(
                        int,
                        ctypes.addressof(self._kv_overrides_array[i].value)
                        + llama_cpp.llama_model_kv_override_value.val_str.offset,
                    )
                    buffer_start = ctypes.cast(address, ctypes.POINTER(ctypes.c_char))
                    ctypes.memmove(
                        buffer_start,
                        v_bytes,
                        128,
                    )
                else:
                    raise ValueError(f"Unknown value type for {k}: {v}")

            self._kv_overrides_array[
                -1
            ].key = b"\0"  # ensure sentinel element is zeroed
            self.model_params.kv_overrides = self._kv_overrides_array

        self.n_batch = min(n_ctx, n_batch)  # ???
        self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
        self.n_threads_batch = n_threads_batch or multiprocessing.cpu_count()

        # Used by the sampler
        self._seed = seed or llama_cpp.LLAMA_DEFAULT_SEED

        # Context Params
        self.context_params = llama_cpp.llama_context_default_params()
        self.context_params.n_ctx = n_ctx
        self.context_params.n_batch = self.n_batch
        self.context_params.n_ubatch = min(self.n_batch, n_ubatch)
        self.context_params.n_threads = self.n_threads
        self.context_params.n_threads_batch = self.n_threads_batch
        self.context_params.rope_scaling_type = (
            rope_scaling_type
            if rope_scaling_type is not None
            else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
        )
        self.context_params.pooling_type = pooling_type
        self.context_params.rope_freq_base = (
            rope_freq_base if rope_freq_base != 0.0 else 0
        )
        self.context_params.rope_freq_scale = (
            rope_freq_scale if rope_freq_scale != 0.0 else 0
        )
        self.context_params.yarn_ext_factor = (
            yarn_ext_factor if yarn_ext_factor != 0.0 else 0
        )
        self.context_params.yarn_attn_factor = (
            yarn_attn_factor if yarn_attn_factor != 0.0 else 0
        )
        self.context_params.yarn_beta_fast = (
            yarn_beta_fast if yarn_beta_fast != 0.0 else 0
        )
        self.context_params.yarn_beta_slow = (
            yarn_beta_slow if yarn_beta_slow != 0.0 else 0
        )
        self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
        self.context_params.logits_all = (
            logits_all if draft_model is None else True
        )  # Must be set to True for speculative decoding
        self.context_params.embeddings = embedding  # TODO: Rename to embeddings
        self.context_params.offload_kqv = offload_kqv
        self.context_params.flash_attn = flash_attn
        #  KV cache quantization
        if type_k is not None:
            self.context_params.type_k = type_k
        if type_v is not None:
            self.context_params.type_v = type_v
        # Sampling Params
        self.context_params.no_perf = no_perf
        self.last_n_tokens_size = last_n_tokens_size

        self.cache: Optional[BaseLlamaCache] = None

        self.lora_base = lora_base
        self.lora_scale = lora_scale
        self.lora_path = lora_path

        self.spm_infill = spm_infill

        if not os.path.exists(model_path):
            raise ValueError(f"Model path does not exist: {model_path}")

        self._model = self._stack.enter_context(
            contextlib.closing(
                internals.LlamaModel(
                    path_model=self.model_path,
                    params=self.model_params,
                    verbose=self.verbose,
                )
            )
        )

        # Override tokenizer
        self.tokenizer_ = tokenizer or LlamaTokenizer(self)

        # Set the default value for the context and correct the batch
        if n_ctx == 0:
            n_ctx = self._model.n_ctx_train()
            self.n_batch = min(n_ctx, n_batch)
            self.context_params.n_ctx = self._model.n_ctx_train()
            self.context_params.n_batch = self.n_batch
            self.context_params.n_ubatch = min(self.n_batch, n_ubatch)

        self._ctx = self._stack.enter_context(
            contextlib.closing(
                internals.LlamaContext(
                    model=self._model,
                    params=self.context_params,
                    verbose=self.verbose,
                )
            )
        )

        self._batch = self._stack.enter_context(
            contextlib.closing(
                internals.LlamaBatch(
                    n_tokens=self.n_batch,
                    embd=0,
                    n_seq_max=self.context_params.n_ctx,
                    verbose=self.verbose,
                )
            )
        )

        self._lora_adapter: Optional[llama_cpp.llama_adapter_lora_p] = None

        if self.lora_path:
            self._lora_adapter = llama_cpp.llama_adapter_lora_init(
                self._model.model,
                self.lora_path.encode("utf-8"),
            )
            if self._lora_adapter is None:
                raise RuntimeError(
                    f"Failed to initialize LoRA adapter from lora path: {self.lora_path}"
                )

            def free_lora_adapter():
                if self._lora_adapter is None:
                    return
                llama_cpp.llama_adapter_lora_free(self._lora_adapter)
                self._lora_adapter = None

            self._stack.callback(free_lora_adapter)

            if llama_cpp.llama_set_adapter_lora(
                self._ctx.ctx, self._lora_adapter, self.lora_scale
            ):
                raise RuntimeError(
                    f"Failed to set LoRA adapter from lora path: {self.lora_path}"
                )

        if self.verbose:
            print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)

        self.chat_format = chat_format
        self.chat_handler = chat_handler
        self._chat_handlers: Dict[
            str, llama_chat_format.LlamaChatCompletionHandler
        ] = {}

        self.draft_model = draft_model

        self._n_vocab = self.n_vocab()
        self._n_ctx = self.n_ctx()

        self._token_nl = self.token_nl()
        self._token_eos = self.token_eos()

        self._candidates = internals.LlamaTokenDataArray(n_vocab=self._n_vocab)

        self.n_tokens = 0
        self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc)
        self.scores: npt.NDArray[np.single] = np.ndarray(
            (n_ctx if logits_all == True else n_batch, self._n_vocab), dtype=np.single
        )

        self._mirostat_mu = ctypes.c_float(
            2.0 * 5.0
        )  # TODO: Move this to sampling context

        try:
            self.metadata = self._model.metadata()
        except Exception as e:
            self.metadata = {}
            if self.verbose:
                print(f"Failed to load metadata: {e}", file=sys.stderr)

        if self.verbose:
            print(f"Model metadata: {self.metadata}", file=sys.stderr)

        eos_token_id = self.token_eos()
        bos_token_id = self.token_bos()

        eos_token = (
            self._model.token_get_text(eos_token_id) if eos_token_id != -1 else ""
        )
        bos_token = (
            self._model.token_get_text(bos_token_id) if bos_token_id != -1 else ""
        )

        # Unfortunately the llama.cpp API does not return metadata arrays, so we can't get template names from tokenizer.chat_templates
        template_choices = dict(
            (name[10:], template)
            for name, template in self.metadata.items()
            if name.startswith("tokenizer.chat_template.")
        )

        if "tokenizer.chat_template" in self.metadata:
            template_choices["chat_template.default"] = self.metadata[
                "tokenizer.chat_template"
            ]

        if self.verbose and template_choices:
            print(
                f"Available chat formats from metadata: {', '.join(template_choices.keys())}",
                file=sys.stderr,
            )

        for name, template in template_choices.items():
            self._chat_handlers[name] = llama_chat_format.Jinja2ChatFormatter(
                template=template,
                eos_token=eos_token,
                bos_token=bos_token,
                stop_token_ids=[eos_token_id],
            ).to_chat_handler()

        if (
            self.chat_format is None
            and self.chat_handler is None
            and "chat_template.default" in template_choices
        ):
            chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata(
                self.metadata
            )

            if chat_format is not None:
                self.chat_format = chat_format
                if self.verbose:
                    print(f"Guessed chat format: {chat_format}", file=sys.stderr)
            else:
                if self.verbose:
                    print(
                        f"Using gguf chat template: {template_choices['chat_template.default']}",
                        file=sys.stderr,
                    )
                    print(f"Using chat eos_token: {eos_token}", file=sys.stderr)
                    print(f"Using chat bos_token: {bos_token}", file=sys.stderr)

                self.chat_format = "chat_template.default"

        if self.chat_format is None and self.chat_handler is None:
            self.chat_format = "llama-2"
            if self.verbose:
                print(
                    f"Using fallback chat format: {self.chat_format}", file=sys.stderr
                )

        self._sampler = None

    @property
    def ctx(self) -> llama_cpp.llama_context_p:
        return self._ctx.ctx

    @property
    def model(self) -> llama_cpp.llama_model_p:
        return self._model.model

    @property
    def _input_ids(self) -> npt.NDArray[np.intc]:
        return self.input_ids[: self.n_tokens]

    @property
    def _scores(self) -> npt.NDArray[np.single]:
        return self.scores[: self.n_tokens, :]

    @property
    def eval_tokens(self) -> Deque[int]:
        return deque(self.input_ids[: self.n_tokens].tolist(), maxlen=self._n_ctx)

    @property
    def eval_logits(self) -> Deque[List[float]]:
        return deque(
            self.scores[: self.n_tokens, :].tolist(),
            maxlen=self._n_ctx if self.context_params.logits_all else 1,
        )

    def tokenize(
        self, text: bytes, add_bos: bool = True, special: bool = False
    ) -> List[int]:
        """Tokenize a string.

        Args:
            text: The utf-8 encoded string to tokenize.
            add_bos: Whether to add a beginning of sequence token.
            special: Whether to tokenize special tokens.

        Raises:
            RuntimeError: If the tokenization failed.

        Returns:
            A list of tokens.
        """
        return self.tokenizer_.tokenize(text, add_bos, special)

    def detokenize(
        self,
        tokens: List[int],
        prev_tokens: Optional[List[int]] = None,
        special: bool = False,
    ) -> bytes:
        """Detokenize a list of tokens.

        Args:
            tokens: The list of tokens to detokenize.
            prev_tokens: The list of previous tokens. Offset mapping will be performed if provided.
            special: Whether to detokenize special tokens.

        Returns:
            The detokenized string.
        """
        return self.tokenizer_.detokenize(
            tokens, prev_tokens=prev_tokens, special=special
        )

    def set_cache(self, cache: Optional[BaseLlamaCache]):
        """Set the cache.

        Args:
            cache: The cache to set.
        """
        self.cache = cache

    def set_seed(self, seed: int):
        """Set the random seed.

        Args:
            seed: The random seed.
        """
        self._seed = seed

    def reset(self):
        """Reset the model state."""
        self.n_tokens = 0

    def eval(self, tokens: Sequence[int]):
        """Evaluate a list of tokens.

        Args:
            tokens: The list of tokens to evaluate.
        """
        self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
        for i in range(0, len(tokens), self.n_batch):
            batch = tokens[i : min(len(tokens), i + self.n_batch)]
            n_past = self.n_tokens
            n_tokens = len(batch)
            self._batch.set_batch(
                batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
            )
            self._ctx.decode(self._batch)
            # Save tokens
            self.input_ids[n_past : n_past + n_tokens] = batch
            # Save logits
            if self.context_params.logits_all:
                rows = n_tokens
                cols = self._n_vocab
                logits = np.ctypeslib.as_array(
                    self._ctx.get_logits(), shape=(rows * cols,)
                )
                self.scores[n_past : n_past + n_tokens, :].reshape(-1)[::] = logits
            else:
                # rows = 1
                # cols = self._n_vocab
                # logits = np.ctypeslib.as_array(
                #     self._ctx.get_logits(), shape=(rows * cols,)
                # )
                # self.scores[n_past + n_tokens - 1, :].reshape(-1)[::] = logits
                # NOTE: Now that sampling is done inside the sampler, logits are only needed for logprobs which requires logits_all
                pass
            # Update n_tokens
            self.n_tokens += n_tokens

    def _init_sampler(
        self,
        top_k: int = 40,
        top_p: float = 0.95,
        min_p: float = 0.05,
        typical_p: float = 1.0,
        temp: float = 0.80,
        repeat_penalty: float = 1.0,
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        tfs_z: float = 1.0,
        mirostat_mode: int = 0,
        mirostat_eta: float = 0.1,
        mirostat_tau: float = 5.0,
        penalize_nl: bool = True,
        logits_processor: Optional[LogitsProcessorList] = None,
        grammar: Optional[LlamaGrammar] = None,
    ):
        sampler = internals.LlamaSampler()

        if logits_processor is not None:
            # Create and add a custom sampler
            def apply_func(token_data_array: llama_cpp.llama_token_data_array_p):
                size = token_data_array.contents.size
                data_soa = token_data_array.contents.data
                data_soa_address = ctypes.addressof(data_soa.contents)
                # NOTE: This is probably broken
                recarray = np.recarray(
                    shape=(size,),
                    dtype=np.dtype(
                        [("id", np.intc), ("logit", np.single), ("p", np.single)],
                        align=True,
                    ),
                    buf=(llama_cpp.llama_token_data * size).from_address(
                        data_soa_address
                    ),
                )
                for logit_processor in logits_processor:
                    recarray.logit[:] = logit_processor(self._input_ids, recarray.logit)

            sampler.add_custom(apply_func)

        sampler.add_penalties(
            n_vocab=self._n_vocab,
            special_eos_id=self._token_eos,
            linefeed_id=self._token_nl,
            penalty_last_n=self.last_n_tokens_size,
            penalty_repeat=repeat_penalty,
            penalty_freq=frequency_penalty,
            penalty_present=presence_penalty,
            penalize_nl=penalize_nl,
            ignore_eos=False,
        )

        if grammar is not None:
            sampler.add_grammar(self._model, grammar)

        if temp < 0.0:
            sampler.add_softmax()
            sampler.add_dist(self._seed)
        elif temp == 0.0:
            sampler.add_greedy()
        else:
            if mirostat_mode == 1:
                mirostat_m = 100
                sampler.add_mirostat(
                    self._n_vocab,
                    self._seed,
                    mirostat_tau,
                    mirostat_eta,
                    mirostat_m,
                )
            elif mirostat_mode == 2:
                sampler.add_mirostat_v2(
                    self._seed,
                    mirostat_tau,
                    mirostat_eta,
                )
            else:
                n_probs = 0
                min_keep = max(1, n_probs)
                sampler.add_top_k(top_k)
                sampler.add_typical(typical_p, min_keep)
                sampler.add_top_p(top_p, min_keep)
                sampler.add_min_p(min_p, min_keep)
                sampler.add_temp(temp)
                sampler.add_dist(self._seed)
        return sampler

    def sample(
        self,
        top_k: int = 40,
        top_p: float = 0.95,
        min_p: float = 0.05,
        typical_p: float = 1.0,
        temp: float = 0.80,
        repeat_penalty: float = 1.0,
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        tfs_z: float = 1.0,
        mirostat_mode: int = 0,
        mirostat_eta: float = 0.1,
        mirostat_tau: float = 5.0,
        penalize_nl: bool = True,
        logits_processor: Optional[LogitsProcessorList] = None,
        grammar: Optional[LlamaGrammar] = None,
        idx: Optional[int] = None,
    ):
        """Sample a token from the model.

        Args:
            top_k: The top-k sampling parameter.
            top_p: The top-p sampling parameter.
            temp: The temperature parameter.
            repeat_penalty: The repeat penalty parameter.

        Returns:
            The sampled token.
        """
        assert self.n_tokens > 0

        tmp_sampler = False

        if self._sampler is None:
            tmp_sampler = True
            self._sampler = self._init_sampler(
                top_k=top_k,
                top_p=top_p,
                min_p=min_p,
                typical_p=typical_p,
                temp=temp,
                repeat_penalty=repeat_penalty,
                frequency_penalty=frequency_penalty,
                presence_penalty=presence_penalty,
                tfs_z=tfs_z,
                mirostat_mode=mirostat_mode,
                mirostat_tau=mirostat_tau,
                mirostat_eta=mirostat_eta,
                penalize_nl=penalize_nl,
                logits_processor=logits_processor,
                grammar=grammar,
            )

        ridx = idx - self.n_tokens if idx is not None else -1

        assert self.ctx is not None
        token = self._sampler.sample(self._ctx, ridx)
        if tmp_sampler:
            self._sampler = None
        return token

    def generate(
        self,
        tokens: Sequence[int],
        top_k: int = 40,
        top_p: float = 0.95,
        min_p: float = 0.05,
        typical_p: float = 1.0,
        temp: float = 0.80,
        repeat_penalty: float = 1.0,
        reset: bool = True,
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        tfs_z: float = 1.0,
        mirostat_mode: int = 0,
        mirostat_tau: float = 5.0,
        mirostat_eta: float = 0.1,
        penalize_nl: bool = True,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        grammar: Optional[LlamaGrammar] = None,
    ) -> Generator[int, Optional[Sequence[int]], None]:
        """Create a generator of tokens from a prompt.

        Examples:
            >>> llama = Llama("models/ggml-7b.bin")
            >>> tokens = llama.tokenize(b"Hello, world!")
            >>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.0):
            ...     print(llama.detokenize([token]))

        Args:
            tokens: The prompt tokens.
            top_k: The top-k sampling parameter.
            top_p: The top-p sampling parameter.
            temp: The temperature parameter.
            repeat_penalty: The repeat penalty parameter.
            reset: Whether to reset the model state.

        Yields:
            The generated tokens.
        """
        # Reset mirostat sampling
        self._mirostat_mu = ctypes.c_float(2.0 * mirostat_tau)
        self._sampler = self._init_sampler(
            top_k=top_k,
            top_p=top_p,
            min_p=min_p,
            typical_p=typical_p,
            temp=temp,
            repeat_penalty=repeat_penalty,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
            tfs_z=tfs_z,
            mirostat_mode=mirostat_mode,
            mirostat_tau=mirostat_tau,
            mirostat_eta=mirostat_eta,
            penalize_nl=penalize_nl,
            logits_processor=logits_processor,
            grammar=grammar,
        )

        # Check for kv cache prefix match
        if reset and self.n_tokens > 0:
            longest_prefix = 0
            for a, b in zip(self._input_ids, tokens[:-1]):
                if a == b:
                    longest_prefix += 1
                else:
                    break
            if longest_prefix > 0:
                reset = False
                tokens = tokens[longest_prefix:]
                self.n_tokens = longest_prefix
                if self.verbose:
                    print(
                        f"Llama.generate: {longest_prefix} prefix-match hit, "
                        f"remaining {len(tokens)} prompt tokens to eval",
                        file=sys.stderr,
                    )

        # Reset the model state
        if reset:
            self.reset()

        # # Reset the grammar
        # if grammar is not None:
        #     grammar.reset()

        sample_idx = self.n_tokens + len(tokens) - 1
        tokens = list(tokens)

        # Eval and sample
        while True:
            self.eval(tokens)
            while sample_idx < self.n_tokens:
                token = self.sample(
                    top_k=top_k,
                    top_p=top_p,
                    min_p=min_p,
                    typical_p=typical_p,
                    temp=temp,
                    repeat_penalty=repeat_penalty,
                    frequency_penalty=frequency_penalty,
                    presence_penalty=presence_penalty,
                    tfs_z=tfs_z,
                    mirostat_mode=mirostat_mode,
                    mirostat_tau=mirostat_tau,
                    mirostat_eta=mirostat_eta,
                    logits_processor=logits_processor,
                    grammar=grammar,
                    penalize_nl=penalize_nl,
                    idx=sample_idx,
                )

                sample_idx += 1
                if stopping_criteria is not None and stopping_criteria(
                    self._input_ids[: sample_idx], self._scores[sample_idx - self.n_tokens, :]
                ):
                    return
                tokens_or_none = yield token
                tokens.clear()
                tokens.append(token)
                if tokens_or_none is not None:
                    tokens.extend(tokens_or_none)

                if sample_idx < self.n_tokens and token != self._input_ids[sample_idx]:
                    self.n_tokens = sample_idx
                    self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
                    break

            if self.draft_model is not None:
                self.input_ids[self.n_tokens : self.n_tokens + len(tokens)] = tokens
                draft_tokens = self.draft_model(
                    self.input_ids[: self.n_tokens + len(tokens)]
                )
                tokens.extend(
                    draft_tokens.astype(int)[
                        : self._n_ctx - self.n_tokens - len(tokens)
                    ]
                )

    def create_embedding(
        self, input: Union[str, List[str]], model: Optional[str] = None
    ) -> CreateEmbeddingResponse:
        """Embed a string.

        Args:
            input: The utf-8 encoded string to embed.

        Returns:
            An embedding object.
        """
        model_name: str = model if model is not None else self.model_path

        input = input if isinstance(input, list) else [input]

        # get numeric embeddings
        embeds: Union[List[List[float]], List[List[List[float]]]]
        total_tokens: int
        embeds, total_tokens = self.embed(input, return_count=True)  # type: ignore

        # convert to CreateEmbeddingResponse
        data: List[Embedding] = [
            {
                "object": "embedding",
                "embedding": emb,
                "index": idx,
            }
            for idx, emb in enumerate(embeds)
        ]

        return {
            "object": "list",
            "data": data,
            "model": model_name,
            "usage": {
                "prompt_tokens": total_tokens,
                "total_tokens": total_tokens,
            },
        }

    def embed(
        self,
        input: Union[str, List[str]],
        normalize: bool = False,
        truncate: bool = True,
        return_count: bool = False,
    ):
        """Embed a string.

        Args:
            input: The utf-8 encoded string to embed.

        Returns:
            A list of embeddings
        """
        n_embd = self.n_embd()
        n_batch = self.n_batch

        # get pooling information
        pooling_type = self.pooling_type()
        logits_all = pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE

        if self.context_params.embeddings is False:
            raise RuntimeError(
                "Llama model must be created with embedding=True to call this method"
            )

        if self.verbose:
            llama_cpp.llama_perf_context_reset(self._ctx.ctx)

        if isinstance(input, str):
            inputs = [input]
        else:
            inputs = input

        # reset batch
        self._batch.reset()

        # decode and fetch embeddings
        data: Union[List[List[float]], List[List[List[float]]]] = []

        def decode_batch(seq_sizes: List[int]):
            llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
            self._ctx.decode(self._batch)
            self._batch.reset()

            # store embeddings
            if pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE:
                pos: int = 0
                for i, size in enumerate(seq_sizes):
                    ptr = llama_cpp.llama_get_embeddings(self._ctx.ctx)
                    embedding: List[List[float]] = [
                        ptr[pos + j * n_embd : pos + (j + 1) * n_embd]
                        for j in range(size)
                    ]
                    if normalize:
                        embedding = [
                            internals.normalize_embedding(e) for e in embedding
                        ]
                    data.append(embedding)
                    pos += size
            else:
                for i in range(len(seq_sizes)):
                    ptr = llama_cpp.llama_get_embeddings_seq(self._ctx.ctx, i)
                    embedding: List[float] = ptr[:n_embd]
                    if normalize:
                        embedding = internals.normalize_embedding(embedding)
                    data.append(embedding)

        # init state
        total_tokens = 0
        s_batch = []
        t_batch = 0
        p_batch = 0

        # accumulate batches and encode
        for text in inputs:
            tokens = self.tokenize(text.encode("utf-8"))
            if truncate:
                tokens = tokens[:n_batch]

            n_tokens = len(tokens)
            total_tokens += n_tokens

            # check for overrun
            if n_tokens > n_batch:
                raise ValueError(
                    f"Requested tokens ({n_tokens}) exceed batch size of {n_batch}"
                )

            # time to eval batch
            if t_batch + n_tokens > n_batch:
                decode_batch(s_batch)
                s_batch = []
                t_batch = 0
                p_batch = 0

            # add to batch
            self._batch.add_sequence(tokens, p_batch, logits_all)

            # update batch stats
            s_batch.append(n_tokens)
            t_batch += n_tokens
            p_batch += 1

        # hanlde last batch
        decode_batch(s_batch)

        if self.verbose:
            llama_cpp.llama_perf_context_print(self._ctx.ctx)

        output = data[0] if isinstance(input, str) else data

        llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
        self.reset()

        if return_count:
            return output, total_tokens
        else:
            return output

    def _create_completion(
        self,
        prompt: Union[str, List[int]],
        suffix: Optional[str] = None,
        max_tokens: Optional[int] = 16,
        temperature: float = 0.8,
        top_p: float = 0.95,
        min_p: float = 0.05,
        typical_p: float = 1.0,
        logprobs: Optional[int] = None,
        echo: bool = False,
        stop: Optional[Union[str, List[str]]] = [],
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        repeat_penalty: float = 1.0,
        top_k: int = 40,
        stream: bool = False,
        seed: Optional[int] = None,
        tfs_z: float = 1.0,
        mirostat_mode: int = 0,
        mirostat_tau: float = 5.0,
        mirostat_eta: float = 0.1,
        model: Optional[str] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        grammar: Optional[LlamaGrammar] = None,
        logit_bias: Optional[Dict[int, float]] = None,
    ) -> Union[
        Iterator[CreateCompletionResponse], Iterator[CreateCompletionStreamResponse]
    ]:
        assert suffix is None or suffix.__class__ is str

        completion_id: str = f"cmpl-{str(uuid.uuid4())}"
        created: int = int(time.time())
        bos_token_id: int = self.token_bos()
        cls_token_id: int = self._model.token_cls()
        sep_token_id: int = self._model.token_sep()
        prefix_token_id: int = 0 # self._model.token_prefix() # TODO: Fix
        middle_token_id: int = 0 # self._model.token_middle() # TODO: Fix
        suffix_token_id: int = 0 # self._model.token_suffix() # TODO: Fix
        add_space_prefix: bool = (
            self.metadata.get("tokenizer.ggml.add_space_prefix", "true") == "true"
        )
        bos_tokens: List[int] = [cls_token_id if cls_token_id != -1 else bos_token_id]
        eos_tokens: List[int] = [
            sep_token_id if sep_token_id != -1 else self.token_eos()
        ]

        if (
            (isinstance(prompt, list) and suffix is None)
            or not self._model.add_bos_token()
            or bos_tokens[:1] == [-1]
        ):
            bos_tokens = []

        if (isinstance(prompt, list) and suffix is None) or (
            not self._model.add_eos_token() and sep_token_id == -1
        ):
            eos_tokens = []

        suffix_space_prefix: int = 0
        # Tokenizer hack to remove leading space
        if add_space_prefix and suffix_token_id >= 0 and suffix:
            suffix = "☺" + suffix
            suffix_space_prefix = 2

        # If prompt is empty, initialize completion with BOS token to avoid
        # detokenization including a space at the beginning of the completion
        completion_tokens: List[int] = [] if len(prompt) > 0 else [bos_token_id]
        # Add blank space to start of prompt to match OG llama tokenizer
        prefix_tokens: List[int] = (
            [prefix_token_id] if prefix_token_id >= 0 and suffix is not None else []
        ) + (
            (
                self.tokenize(
                    prompt.encode("utf-8"),
                    add_bos=False,
                    special=(prefix_token_id < 0 or suffix is None),
                )
                if prompt != ""
                else []
            )
            if isinstance(prompt, str)
            else prompt
        )
        suffix_tokens: List[int] = (
            (
                [suffix_token_id]
                + (
                    self.tokenize(suffix.encode("utf-8"), add_bos=False, special=False)[
                        suffix_space_prefix:
                    ]
                    if suffix
                    else []
                )
            )
            if suffix_token_id >= 0 and suffix is not None
            else []
        )
        middle_tokens: List[int] = (
            [middle_token_id] if middle_token_id >= 0 and suffix is not None else []
        )
        prompt_tokens: List[int] = (
            bos_tokens
            + (
                (suffix_tokens + prefix_tokens + middle_tokens)
                if self.spm_infill
                else (prefix_tokens + suffix_tokens + middle_tokens)
            )
            + eos_tokens
        )
        text: bytes = b""
        returned_tokens: int = 0
        stop = (
            stop if isinstance(stop, list) else [stop] if isinstance(stop, str) else []
        )
        model_name: str = model if model is not None else self.model_path

        if prompt_tokens[:2] == [self.token_bos()] * 2:
            warnings.warn(
                f'Detected duplicate leading "{self._model.token_get_text(self.token_bos())}" in prompt, this will likely reduce response quality, consider removing it...',
                RuntimeWarning,
            )

        # NOTE: This likely doesn't work correctly for the first token in the prompt
        # because of the extra space added to the start of the prompt_tokens
        if logit_bias is not None:
            logit_bias_map = {int(k): float(v) for k, v in logit_bias.items()}

            def logit_bias_processor(
                input_ids: npt.NDArray[np.intc],
                scores: npt.NDArray[np.single],
            ) -> npt.NDArray[np.single]:
                new_scores = np.copy(
                    scores
                )  # Does it make sense to copy the whole array or can we just overwrite the original one?
                for input_id, score in logit_bias_map.items():
                    new_scores[input_id] = score + scores[input_id]
                return new_scores

            _logit_bias_processor = LogitsProcessorList([logit_bias_processor])
            if logits_processor is None:
                logits_processor = _logit_bias_processor
            else:
                logits_processor = logits_processor.extend(_logit_bias_processor)

        if self.verbose:
            self._ctx.reset_timings()

        if len(prompt_tokens) >= self._n_ctx:
            raise ValueError(
                f"Requested tokens ({len(prompt_tokens)}) exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
            )

        if max_tokens is None or max_tokens <= 0:
            # Unlimited, depending on n_ctx.
            max_tokens = self._n_ctx - len(prompt_tokens)

        # Truncate max_tokens if requested tokens would exceed the context window
        max_tokens = (
            max_tokens
            if max_tokens + len(prompt_tokens) < self._n_ctx
            else (self._n_ctx - len(prompt_tokens))
        )

        if stop != []:
            stop_sequences = [s.encode("utf-8") for s in stop]
        else:
            stop_sequences = []

        if logprobs is not None and self.context_params.logits_all is False:
            raise ValueError(
                "logprobs is not supported for models created with logits_all=False"
            )

        if self.cache:
            try:
                cache_item = self.cache[prompt_tokens]
                cache_prefix_len = Llama.longest_token_prefix(
                    cache_item.input_ids.tolist(), prompt_tokens
                )
                eval_prefix_len = Llama.longest_token_prefix(
                    self._input_ids.tolist(), prompt_tokens
                )
                if cache_prefix_len > eval_prefix_len:
                    self.load_state(cache_item)
                    if self.verbose:
                        print("Llama._create_completion: cache hit", file=sys.stderr)
            except KeyError:
                if self.verbose:
                    print("Llama._create_completion: cache miss", file=sys.stderr)

        if seed is not None:
            self.set_seed(seed)
        else:
            self.set_seed(random.Random(self._seed).randint(0, 2 ** 32))

        finish_reason = "length"
        multibyte_fix = 0
        for token in self.generate(
            prompt_tokens,
            top_k=top_k,
            top_p=top_p,
            min_p=min_p,
            typical_p=typical_p,
            temp=temperature,
            tfs_z=tfs_z,
            mirostat_mode=mirostat_mode,
            mirostat_tau=mirostat_tau,
            mirostat_eta=mirostat_eta,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
            repeat_penalty=repeat_penalty,
            stopping_criteria=stopping_criteria,
            logits_processor=logits_processor,
            grammar=grammar,
        ):
            if llama_cpp.llama_token_is_eog(self._model.vocab, token):
                text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
                finish_reason = "stop"
                break

            completion_tokens.append(token)

            all_text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)

            # Contains multi-byte UTF8
            for k, char in enumerate(all_text[-3:]):
                k = 3 - k
                for num, pattern in [(2, 192), (3, 224), (4, 240)]:
                    # Bitwise AND check
                    if num > k and pattern & char == pattern:
                        multibyte_fix = num - k

            # Stop incomplete bytes from passing
            if multibyte_fix > 0:
                multibyte_fix -= 1
                continue

            any_stop = [s for s in stop_sequences if s in all_text]
            if len(any_stop) > 0:
                first_stop = any_stop[0]
                text = all_text[: all_text.index(first_stop)]
                finish_reason = "stop"
                break

            if stream:
                remaining_tokens = completion_tokens[returned_tokens:]
                remaining_text = self.detokenize(
                    remaining_tokens,
                    prev_tokens=prompt_tokens + completion_tokens[:returned_tokens],
                )
                remaining_length = len(remaining_text)

                # We want to avoid yielding any characters from
                # the generated text if they are part of a stop
                # sequence.
                first_stop_position = 0
                for s in stop_sequences:
                    for i in range(min(len(s), remaining_length), 0, -1):
                        if remaining_text.endswith(s[:i]):
                            if i > first_stop_position:
                                first_stop_position = i
                            break

                token_end_position = 0

                if logprobs is not None:
                    # not sure how to handle this branch when dealing
                    # with CJK output, so keep it unchanged
                    for token in remaining_tokens:
                        if token == bos_token_id:
                            continue
                        token_end_position += len(
                            self.detokenize(
                                [token],
                                prev_tokens=prompt_tokens
                                + completion_tokens[:returned_tokens],
                            )
                        )
                        # Check if stop sequence is in the token
                        if token_end_position > (
                            remaining_length - first_stop_position
                        ):
                            break
                        token_str = self.detokenize(
                            [token],
                            prev_tokens=prompt_tokens
                            + completion_tokens[:returned_tokens],
                        ).decode("utf-8", errors="ignore")
                        text_offset = len(prompt) + len(
                            self.detokenize(
                                completion_tokens[:returned_tokens],
                                prev_tokens=prompt_tokens
                                + completion_tokens[:returned_tokens],
                            ).decode("utf-8", errors="ignore")
                        )
                        token_offset = len(prompt_tokens) + returned_tokens
                        logits = self._scores[token_offset - 1, :]
                        current_logprobs = Llama.logits_to_logprobs(logits).tolist()
                        sorted_logprobs = list(
                            sorted(
                                zip(current_logprobs, range(len(current_logprobs))),
                                reverse=True,
                            )
                        )
                        top_logprob = {
                            self.detokenize([i]).decode(
                                "utf-8", errors="ignore"
                            ): logprob
                            for logprob, i in sorted_logprobs[:logprobs]
                        }
                        top_logprob.update({token_str: current_logprobs[int(token)]})
                        logprobs_or_none = {
                            "tokens": [
                                self.detokenize(
                                    [token],
                                    prev_tokens=prompt_tokens
                                    + completion_tokens[:returned_tokens],
                                ).decode("utf-8", errors="ignore")
                            ],
                            "text_offset": [text_offset],
                            "token_logprobs": [current_logprobs[int(token)]],
                            "top_logprobs": [top_logprob],
                        }
                        returned_tokens += 1
                        yield {
                            "id": completion_id,
                            "object": "text_completion",
                            "created": created,
                            "model": model_name,
                            "choices": [
                                {
                                    "text": self.detokenize(
                                        [token],
                                        prev_tokens=prompt_tokens
                                        + completion_tokens[:returned_tokens],
                                    ).decode("utf-8", errors="ignore"),
                                    "index": 0,
                                    "logprobs": logprobs_or_none,
                                    "finish_reason": None,
                                }
                            ],
                        }
                else:
                    while len(remaining_tokens) > 0:
                        decode_success = False
                        for i in range(1, len(remaining_tokens) + 1):
                            try:
                                bs = self.detokenize(
                                    remaining_tokens[:i],
                                    prev_tokens=prompt_tokens
                                    + completion_tokens[:returned_tokens],
                                )
                                ts = bs.decode("utf-8")
                                decode_success = True
                                break
                            except UnicodeError:
                                pass
                        else:
                            break
                        if not decode_success:
                            # all remaining tokens cannot be decoded to a UTF-8 character
                            break
                        token_end_position += len(bs)
                        if token_end_position > (
                            remaining_length - first_stop_position
                        ):
                            break
                        remaining_tokens = remaining_tokens[i:]
                        returned_tokens += i

                        yield {
                            "id": completion_id,
                            "object": "text_completion",
                            "created": created,
                            "model": model_name,
                            "choices": [
                                {
                                    "text": ts,
                                    "index": 0,
                                    "logprobs": None,
                                    "finish_reason": None,
                                }
                            ],
                        }

            if len(completion_tokens) >= max_tokens:
                text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
                finish_reason = "length"
                break

        if stopping_criteria is not None and stopping_criteria(
            self._input_ids, self._scores[-1, :]
        ):
            text = self.detokenize(completion_tokens, prev_tokens=prompt_tokens)
            finish_reason = "stop"

        if self.verbose:
            self._ctx.print_timings()

        if stream:
            remaining_tokens = completion_tokens[returned_tokens:]
            remaining_text = self.detokenize(
                remaining_tokens,
                prev_tokens=prompt_tokens + completion_tokens[:returned_tokens],
            )
            any_stop = [s for s in stop_sequences if s in remaining_text]
            if len(any_stop) > 0:
                end = min(remaining_text.index(stop) for stop in any_stop)
            else:
                end = len(remaining_text)

            token_end_position = 0
            for token in remaining_tokens:
                token_end_position += len(
                    self.detokenize(
                        [token],
                        prev_tokens=prompt_tokens + completion_tokens[:returned_tokens],
                    )
                )

                logprobs_or_none: Optional[CompletionLogprobs] = None
                if logprobs is not None:
                    if token == bos_token_id:
                        continue
                    token_str = self.detokenize([token]).decode(
                        "utf-8", errors="ignore"
                    )
                    text_offset = len(prompt) + len(
                        self.detokenize(
                            completion_tokens[:returned_tokens],
                            prev_tokens=prompt_tokens
                            + completion_tokens[:returned_tokens],
                        )
                    )
                    token_offset = len(prompt_tokens) + returned_tokens - 1
                    logits = self._scores[token_offset, :]
                    current_logprobs = Llama.logits_to_logprobs(logits).tolist()
                    sorted_logprobs = list(
                        sorted(
                            zip(current_logprobs, range(len(current_logprobs))),
                            reverse=True,
                        )
                    )
                    top_logprob = {
                        self.detokenize([i]).decode("utf-8", errors="ignore"): logprob
                        for logprob, i in sorted_logprobs[:logprobs]
                    }
                    top_logprob.update({token_str: current_logprobs[int(token)]})
                    logprobs_or_none = {
                        "tokens": [
                            self.detokenize([token]).decode("utf-8", errors="ignore")
                        ],
                        "text_offset": [text_offset],
                        "token_logprobs": [current_logprobs[int(token)]],
                        "top_logprobs": [top_logprob],
                    }

                if token_end_position >= end:
                    last_text = self.detokenize([token])
                    if token_end_position == end - 1:
                        break
                    returned_tokens += 1
                    yield {
                        "id": completion_id,
                        "object": "text_completion",
                        "created": created,
                        "model": model_name,
                        "choices": [
                            {
                                "text": last_text[
                                    : len(last_text) - (token_end_position - end)
                                ].decode("utf-8", errors="ignore"),
                                "index": 0,
                                "logprobs": logprobs_or_none,
                                "finish_reason": None,
                            }
                        ],
                    }
                    break
                returned_tokens += 1
                yield {
                    "id": completion_id,
                    "object": "text_completion",
                    "created": created,
                    "model": model_name,
                    "choices": [
                        {
                            "text": self.detokenize([token]).decode(
                                "utf-8", errors="ignore"
                            ),
                            "index": 0,
                            "logprobs": logprobs_or_none,
                            "finish_reason": None,
                        }
                    ],
                }
            yield {
                "id": completion_id,
                "object": "text_completion",
                "created": created,
                "model": model_name,
                "choices": [
                    {
                        "text": "",
                        "index": 0,
                        "logprobs": None,
                        "finish_reason": finish_reason,
                    }
                ],
            }
            if self.cache:
                if self.verbose:
                    print("Llama._create_completion: cache save", file=sys.stderr)
                self.cache[prompt_tokens + completion_tokens] = self.save_state()
                if self.verbose:
                    print("Llama._create_completion: cache saved", file=sys.stderr)
            return

        if self.cache:
            if self.verbose:
                print("Llama._create_completion: cache save", file=sys.stderr)
            self.cache[prompt_tokens + completion_tokens] = self.save_state()

        text_str = text.decode("utf-8", errors="ignore")

        if echo:
            text_str = prompt + text_str

        if suffix_token_id < 0 and suffix is not None:
            text_str = text_str + suffix

        logprobs_or_none: Optional[CompletionLogprobs] = None
        if logprobs is not None:
            text_offset = 0 if echo else len(prompt)
            token_offset = 0 if echo else len(prompt_tokens[1:])
            text_offsets: List[int] = []
            token_logprobs: List[Optional[float]] = []
            tokens: List[str] = []
            top_logprobs: List[Optional[Dict[str, float]]] = []

            if echo:
                # Remove leading BOS token if exists
                all_tokens = (
                    prompt_tokens[1 if prompt_tokens[0] == self.token_bos() else 0 :]
                    + completion_tokens
                )
            else:
                all_tokens = completion_tokens

            all_token_strs = [
                self.detokenize([token], prev_tokens=all_tokens[:i]).decode(
                    "utf-8", errors="ignore"
                )
                for i, token in enumerate(all_tokens)
            ]
            all_logprobs = Llama.logits_to_logprobs(self._scores)[token_offset:]
            # TODO: may be able to change this loop to use np.take_along_dim
            for idx, (token, token_str, logprobs_token) in enumerate(
                zip(all_tokens, all_token_strs, all_logprobs)
            ):
                if token == bos_token_id:
                    continue
                text_offsets.append(
                    text_offset
                    + len(
                        self.detokenize(all_tokens[:idx]).decode(
                            "utf-8", errors="ignore"
                        )
                    )
                )
                tokens.append(token_str)
                sorted_logprobs = list(
                    sorted(
                        zip(logprobs_token, range(len(logprobs_token))), reverse=True
                    )
                )
                token_logprobs.append(logprobs_token[int(token)])
                top_logprob: Optional[Dict[str, float]] = {
                    self.detokenize([i], prev_tokens=all_tokens[:idx]).decode(
                        "utf-8", errors="ignore"
                    ): logprob
                    for logprob, i in sorted_logprobs[:logprobs]
                }
                top_logprob.update({token_str: logprobs_token[int(token)]})
                top_logprobs.append(top_logprob)
            # Weird idosincracy of the OpenAI API where
            # token_logprobs and top_logprobs are null for
            # the first token.
            if echo and len(all_tokens) > 0:
                token_logprobs[0] = None
                top_logprobs[0] = None
            logprobs_or_none = {
                "tokens": tokens,
                "text_offset": text_offsets,
                "token_logprobs": token_logprobs,
                "top_logprobs": top_logprobs,
            }

        yield {
            "id": completion_id,
            "object": "text_completion",
            "created": created,
            "model": model_name,
            "choices": [
                {
                    "text": text_str,
                    "index": 0,
                    "logprobs": logprobs_or_none,
                    "finish_reason": finish_reason,
                }
            ],
            "usage": {
                "prompt_tokens": len(prompt_tokens),
                "completion_tokens": len(completion_tokens),
                "total_tokens": len(prompt_tokens) + len(completion_tokens),
            },
        }

    def create_completion(
        self,
        prompt: Union[str, List[int]],
        suffix: Optional[str] = None,
        max_tokens: Optional[int] = 16,
        temperature: float = 0.8,
        top_p: float = 0.95,
        min_p: float = 0.05,
        typical_p: float = 1.0,
        logprobs: Optional[int] = None,
        echo: bool = False,
        stop: Optional[Union[str, List[str]]] = [],
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        repeat_penalty: float = 1.0,
        top_k: int = 40,
        stream: bool = False,
        seed: Optional[int] = None,
        tfs_z: float = 1.0,
        mirostat_mode: int = 0,
        mirostat_tau: float = 5.0,
        mirostat_eta: float = 0.1,
        model: Optional[str] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        grammar: Optional[LlamaGrammar] = None,
        logit_bias: Optional[Dict[int, float]] = None,
    ) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
        """Generate text from a prompt.

        Args:
            prompt: The prompt to generate text from.
            suffix: A suffix to append to the generated text. If None, no suffix is appended.
            max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
            temperature: The temperature to use for sampling.
            top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
            min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
            typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
            logprobs: The number of logprobs to return. If None, no logprobs are returned.
            echo: Whether to echo the prompt.
            stop: A list of strings to stop generation when encountered.
            frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
            presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
            repeat_penalty: The penalty to apply to repeated tokens.
            top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
            stream: Whether to stream the results.
            seed: The seed to use for sampling.
            tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
            mirostat_mode: The mirostat sampling mode.
            mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
            mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
            model: The name to use for the model in the completion object.
            stopping_criteria: A list of stopping criteria to use.
            logits_processor: A list of logits processors to use.
            grammar: A grammar to use for constrained sampling.
            logit_bias: A logit bias to use.

        Raises:
            ValueError: If the requested tokens exceed the context window.
            RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.

        Returns:
            Response object containing the generated text.
        """
        completion_or_chunks = self._create_completion(
            prompt=prompt,
            suffix=suffix,
            max_tokens=-1 if max_tokens is None else max_tokens,
            temperature=temperature,
            top_p=top_p,
            min_p=min_p,
            typical_p=typical_p,
            logprobs=logprobs,
            echo=echo,
            stop=stop,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
            repeat_penalty=repeat_penalty,
            top_k=top_k,
            stream=stream,
            seed=seed,
            tfs_z=tfs_z,
            mirostat_mode=mirostat_mode,
            mirostat_tau=mirostat_tau,
            mirostat_eta=mirostat_eta,
            model=model,
            stopping_criteria=stopping_criteria,
            logits_processor=logits_processor,
            grammar=grammar,
            logit_bias=logit_bias,
        )
        if stream:
            chunks: Iterator[CreateCompletionStreamResponse] = completion_or_chunks
            return chunks
        completion: Completion = next(completion_or_chunks)  # type: ignore
        return completion

    def __call__(
        self,
        prompt: str,
        suffix: Optional[str] = None,
        max_tokens: Optional[int] = 16,
        temperature: float = 0.8,
        top_p: float = 0.95,
        min_p: float = 0.05,
        typical_p: float = 1.0,
        logprobs: Optional[int] = None,
        echo: bool = False,
        stop: Optional[Union[str, List[str]]] = [],
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        repeat_penalty: float = 1.0,
        top_k: int = 40,
        stream: bool = False,
        seed: Optional[int] = None,
        tfs_z: float = 1.0,
        mirostat_mode: int = 0,
        mirostat_tau: float = 5.0,
        mirostat_eta: float = 0.1,
        model: Optional[str] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        grammar: Optional[LlamaGrammar] = None,
        logit_bias: Optional[Dict[int, float]] = None,
    ) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
        """Generate text from a prompt.

        Args:
            prompt: The prompt to generate text from.
            suffix: A suffix to append to the generated text. If None, no suffix is appended.
            max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
            temperature: The temperature to use for sampling.
            top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
            min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
            typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
            logprobs: The number of logprobs to return. If None, no logprobs are returned.
            echo: Whether to echo the prompt.
            stop: A list of strings to stop generation when encountered.
            frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
            presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
            repeat_penalty: The penalty to apply to repeated tokens.
            top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
            stream: Whether to stream the results.
            seed: The seed to use for sampling.
            tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
            mirostat_mode: The mirostat sampling mode.
            mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
            mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
            model: The name to use for the model in the completion object.
            stopping_criteria: A list of stopping criteria to use.
            logits_processor: A list of logits processors to use.
            grammar: A grammar to use for constrained sampling.
            logit_bias: A logit bias to use.

        Raises:
            ValueError: If the requested tokens exceed the context window.
            RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.

        Returns:
            Response object containing the generated text.
        """
        return self.create_completion(
            prompt=prompt,
            suffix=suffix,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            min_p=min_p,
            typical_p=typical_p,
            logprobs=logprobs,
            echo=echo,
            stop=stop,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
            repeat_penalty=repeat_penalty,
            top_k=top_k,
            stream=stream,
            seed=seed,
            tfs_z=tfs_z,
            mirostat_mode=mirostat_mode,
            mirostat_tau=mirostat_tau,
            mirostat_eta=mirostat_eta,
            model=model,
            stopping_criteria=stopping_criteria,
            logits_processor=logits_processor,
            grammar=grammar,
            logit_bias=logit_bias,
        )

    def create_chat_completion(
        self,
        messages: List[ChatCompletionRequestMessage],
        functions: Optional[List[ChatCompletionFunction]] = None,
        function_call: Optional[ChatCompletionRequestFunctionCall] = None,
        tools: Optional[List[ChatCompletionTool]] = None,
        tool_choice: Optional[ChatCompletionToolChoiceOption] = None,
        temperature: float = 0.2,
        top_p: float = 0.95,
        top_k: int = 40,
        min_p: float = 0.05,
        typical_p: float = 1.0,
        stream: bool = False,
        stop: Optional[Union[str, List[str]]] = [],
        seed: Optional[int] = None,
        response_format: Optional[ChatCompletionRequestResponseFormat] = None,
        max_tokens: Optional[int] = None,
        presence_penalty: float = 0.0,
        frequency_penalty: float = 0.0,
        repeat_penalty: float = 1.0,
        tfs_z: float = 1.0,
        mirostat_mode: int = 0,
        mirostat_tau: float = 5.0,
        mirostat_eta: float = 0.1,
        model: Optional[str] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        grammar: Optional[LlamaGrammar] = None,
        logit_bias: Optional[Dict[int, float]] = None,
        logprobs: Optional[bool] = None,
        top_logprobs: Optional[int] = None,
    ) -> Union[
        CreateChatCompletionResponse, Iterator[CreateChatCompletionStreamResponse]
    ]:
        """Generate a chat completion from a list of messages.

        Args:
            messages: A list of messages to generate a response for.
            functions: A list of functions to use for the chat completion.
            function_call: A function call to use for the chat completion.
            tools: A list of tools to use for the chat completion.
            tool_choice: A tool choice to use for the chat completion.
            temperature: The temperature to use for sampling.
            top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
            top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
            min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
            typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
            stream: Whether to stream the results.
            stop: A list of strings to stop generation when encountered.
            seed: The seed to use for sampling.
            response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.
            max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
            presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
            frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
            repeat_penalty: The penalty to apply to repeated tokens.
            tfs_z: The tail-free sampling parameter.
            mirostat_mode: The mirostat sampling mode.
            mirostat_tau: The mirostat sampling tau parameter.
            mirostat_eta: The mirostat sampling eta parameter.
            model: The name to use for the model in the completion object.
            logits_processor: A list of logits processors to use.
            grammar: A grammar to use.
            logit_bias: A logit bias to use.

        Returns:
            Generated chat completion or a stream of chat completion chunks.
        """
        handler = (
            self.chat_handler
            or self._chat_handlers.get(self.chat_format)
            or llama_chat_format.get_chat_completion_handler(self.chat_format)
        )
        return handler(
            llama=self,
            messages=messages,
            functions=functions,
            function_call=function_call,
            tools=tools,
            tool_choice=tool_choice,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            min_p=min_p,
            typical_p=typical_p,
            logprobs=logprobs,
            top_logprobs=top_logprobs,
            stream=stream,
            stop=stop,
            seed=seed,
            response_format=response_format,
            max_tokens=max_tokens,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            repeat_penalty=repeat_penalty,
            tfs_z=tfs_z,
            mirostat_mode=mirostat_mode,
            mirostat_tau=mirostat_tau,
            mirostat_eta=mirostat_eta,
            model=model,
            logits_processor=logits_processor,
            grammar=grammar,
            logit_bias=logit_bias,
        )

    def create_chat_completion_openai_v1(
        self,
        *args: Any,
        **kwargs: Any,
    ):
        """Generate a chat completion with return type based on the the OpenAI v1 API.

        OpenAI python package is required to use this method.

        You can install it with `pip install openai`.

        Args:
            *args: Positional arguments to pass to create_chat_completion.
            **kwargs: Keyword arguments to pass to create_chat_completion.

        Returns:
            Generated chat completion or a stream of chat completion chunks.
        """
        try:
            from openai.types.chat import ChatCompletion, ChatCompletionChunk

            stream = kwargs.get("stream", False)  # type: ignore
            assert isinstance(stream, bool)
            if stream:
                return (ChatCompletionChunk(**chunk) for chunk in self.create_chat_completion(*args, **kwargs))  # type: ignore
            else:
                return ChatCompletion(**self.create_chat_completion(*args, **kwargs))  # type: ignore
        except ImportError:
            raise ImportError(
                "To use create_chat_completion_openai_v1, you must install the openai package."
                "You can install it with `pip install openai`."
            )

    def __getstate__(self):
        return dict(
            model_path=self.model_path,
            # Model Params
            n_gpu_layers=self.model_params.n_gpu_layers,
            split_mode=self.model_params.split_mode,
            main_gpu=self.model_params.main_gpu,
            tensor_split=self.tensor_split,
            vocab_only=self.model_params.vocab_only,
            use_mmap=self.model_params.use_mmap,
            use_mlock=self.model_params.use_mlock,
            kv_overrides=self.kv_overrides,
            # Context Params
            seed=self._seed,
            n_ctx=self.context_params.n_ctx,
            n_batch=self.n_batch,
            n_ubatch=self.context_params.n_ubatch,
            n_threads=self.context_params.n_threads,
            n_threads_batch=self.context_params.n_threads_batch,
            rope_scaling_type=self.context_params.rope_scaling_type,
            pooling_type=self.context_params.pooling_type,
            rope_freq_base=self.context_params.rope_freq_base,
            rope_freq_scale=self.context_params.rope_freq_scale,
            yarn_ext_factor=self.context_params.yarn_ext_factor,
            yarn_attn_factor=self.context_params.yarn_attn_factor,
            yarn_beta_fast=self.context_params.yarn_beta_fast,
            yarn_beta_slow=self.context_params.yarn_beta_slow,
            yarn_orig_ctx=self.context_params.yarn_orig_ctx,
            logits_all=self.context_params.logits_all,
            embedding=self.context_params.embeddings,
            offload_kqv=self.context_params.offload_kqv,
            flash_attn=self.context_params.flash_attn,
            # Sampling Params
            no_perf=self.context_params.no_perf,
            last_n_tokens_size=self.last_n_tokens_size,
            # LoRA Params
            lora_base=self.lora_base,
            lora_scale=self.lora_scale,
            lora_path=self.lora_path,
            # Backend Params
            numa=self.numa,
            # Chat Format Params
            chat_format=self.chat_format,
            chat_handler=self.chat_handler,
            # Speculative Decidng
            draft_model=self.draft_model,
            # KV cache quantization
            type_k=self.context_params.type_k,
            type_v=self.context_params.type_v,
            # Misc
            spm_infill=self.spm_infill,
            verbose=self.verbose,
        )

    def __setstate__(self, state):
        self.__init__(**state)

    def save_state(self) -> LlamaState:
        if self.verbose:
            print("Llama.save_state: saving llama state", file=sys.stderr)
        state_size = llama_cpp.llama_get_state_size(self._ctx.ctx)
        if self.verbose:
            print(f"Llama.save_state: got state size: {state_size}", file=sys.stderr)
        llama_state = (ctypes.c_uint8 * int(state_size))()
        if self.verbose:
            print("Llama.save_state: allocated state", file=sys.stderr)
        n_bytes = llama_cpp.llama_copy_state_data(self._ctx.ctx, llama_state)
        if self.verbose:
            print(f"Llama.save_state: copied llama state: {n_bytes}", file=sys.stderr)
        if int(n_bytes) > int(state_size):
            raise RuntimeError("Failed to copy llama state data")
        llama_state_compact = (ctypes.c_uint8 * int(n_bytes))()
        llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
        if self.verbose:
            print(
                f"Llama.save_state: saving {n_bytes} bytes of llama state",
                file=sys.stderr,
            )
        return LlamaState(
            scores=self._scores.copy(),
            input_ids=self.input_ids.copy(),
            n_tokens=self.n_tokens,
            llama_state=bytes(llama_state_compact),
            llama_state_size=n_bytes,
            seed=self._seed,
        )

    def load_state(self, state: LlamaState) -> None:
        # Only filling in up to `n_tokens` and then zero-ing out the rest
        self.scores[: state.n_tokens, :] = state.scores.copy()
        rest = self.scores[state.n_tokens :, :]
        rest[rest > 0] = 0.0
        self.input_ids = state.input_ids.copy()
        self.n_tokens = state.n_tokens
        self._seed = state.seed
        state_size = state.llama_state_size
        LLamaStateArrayType = ctypes.c_uint8 * state_size
        llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state)

        if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size:
            raise RuntimeError("Failed to set llama state data")

    def n_ctx(self) -> int:
        """Return the context window size."""
        return self._ctx.n_ctx()

    def n_embd(self) -> int:
        """Return the embedding size."""
        return self._model.n_embd()

    def n_vocab(self) -> int:
        """Return the vocabulary size."""
        return self._model.n_vocab()

    def tokenizer(self) -> LlamaTokenizer:
        """Return the llama tokenizer for this model."""
        return LlamaTokenizer(self)

    def token_eos(self) -> int:
        """Return the end-of-sequence token."""
        return self._model.token_eos()

    def token_bos(self) -> int:
        """Return the beginning-of-sequence token."""
        return self._model.token_bos()

    def token_nl(self) -> int:
        """Return the newline token."""
        return self._model.token_nl()

    def pooling_type(self) -> str:
        """Return the pooling type."""
        return self._ctx.pooling_type()

    def close(self) -> None:
        """Explicitly free the model from memory."""
        self._stack.close()

    def __del__(self) -> None:
        self.close()

    @staticmethod
    def logits_to_logprobs(
        logits: Union[npt.NDArray[np.single], List], axis: int = -1
    ) -> npt.NDArray[np.single]:
        # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html
        logits_maxs: np.ndarray = np.amax(logits, axis=axis, keepdims=True)
        if logits_maxs.ndim > 0:
            logits_maxs[~np.isfinite(logits_maxs)] = 0
        elif not np.isfinite(logits_maxs):
            logits_maxs = 0
        subtract_maxs = np.subtract(logits, logits_maxs, dtype=np.single)
        exp = np.exp(subtract_maxs)
        # Suppress warnings about log of zero
        with np.errstate(divide="ignore"):
            summed = np.sum(exp, axis=axis, keepdims=True)
            out = np.log(summed)
        return subtract_maxs - out

    @staticmethod
    def longest_token_prefix(a: Sequence[int], b: Sequence[int]):
        longest_prefix = 0
        for _a, _b in zip(a, b):
            if _a == _b:
                longest_prefix += 1
            else:
                break
        return longest_prefix

    @classmethod
    def from_pretrained(
        cls,
        repo_id: str,
        filename: Optional[str],
        additional_files: Optional[List] = None,
        local_dir: Optional[Union[str, os.PathLike[str]]] = None,
        local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
        cache_dir: Optional[Union[str, os.PathLike[str]]] = None,
        **kwargs: Any,
    ) -> "Llama":
        """Create a Llama model from a pretrained model name or path.
        This method requires the huggingface-hub package.
        You can install it with `pip install huggingface-hub`.

        Args:
            repo_id: The model repo id.
            filename: A filename or glob pattern to match the model file in the repo.
            additional_files: A list of filenames or glob patterns to match additional model files in the repo.
            local_dir: The local directory to save the model to.
            local_dir_use_symlinks: Whether to use symlinks when downloading the model.
            **kwargs: Additional keyword arguments to pass to the Llama constructor.

        Returns:
            A Llama model."""
        try:
            from huggingface_hub import hf_hub_download, HfFileSystem
            from huggingface_hub.utils import validate_repo_id
        except ImportError:
            raise ImportError(
                "Llama.from_pretrained requires the huggingface-hub package. "
                "You can install it with `pip install huggingface-hub`."
            )

        validate_repo_id(repo_id)

        hffs = HfFileSystem()

        files = [
            file["name"] if isinstance(file, dict) else file
            for file in hffs.ls(repo_id, recursive=True)
        ]

        # split each file into repo_id, subfolder, filename
        file_list: List[str] = []
        for file in files:
            rel_path = Path(file).relative_to(repo_id)
            file_list.append(str(rel_path))

        # find the only/first shard file:
        matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)]  # type: ignore

        if len(matching_files) == 0:
            raise ValueError(
                f"No file found in {repo_id} that match {filename}\n\n"
                f"Available Files:\n{json.dumps(file_list)}"
            )

        if len(matching_files) > 1:
            raise ValueError(
                f"Multiple files found in {repo_id} matching {filename}\n\n"
                f"Available Files:\n{json.dumps(files)}"
            )

        (matching_file,) = matching_files

        subfolder = str(Path(matching_file).parent)
        filename = Path(matching_file).name

        # download the file
        hf_hub_download(
            repo_id=repo_id,
            filename=filename,
            subfolder=subfolder,
            local_dir=local_dir,
            local_dir_use_symlinks=local_dir_use_symlinks,
            cache_dir=cache_dir,
        )

        if additional_files:
            for additonal_file_name in additional_files:
                # find the additional shard file:
                matching_additional_files = [file for file in file_list if fnmatch.fnmatch(file, additonal_file_name)]

                if len(matching_additional_files) == 0:
                    raise ValueError(
                        f"No file found in {repo_id} that match {additonal_file_name}\n\n"
                        f"Available Files:\n{json.dumps(file_list)}"
                    )

                if len(matching_additional_files) > 1:
                    raise ValueError(
                        f"Multiple files found in {repo_id} matching {additonal_file_name}\n\n"
                        f"Available Files:\n{json.dumps(files)}"
                    )

                (matching_additional_file,) = matching_additional_files

                # download the additional file
                hf_hub_download(
                    repo_id=repo_id,
                    filename=matching_additional_file,
                    subfolder=subfolder,
                    local_dir=local_dir,
                    local_dir_use_symlinks=local_dir_use_symlinks,
                    cache_dir=cache_dir,
                )

        if local_dir is None:
            model_path = hf_hub_download(
                repo_id=repo_id,
                filename=filename,
                subfolder=subfolder,
                local_dir=local_dir,
                local_dir_use_symlinks=local_dir_use_symlinks,
                cache_dir=cache_dir,
                local_files_only=True,
            )
        else:
            model_path = os.path.join(local_dir, filename)

        # loading the first file of a sharded GGUF loads all remaining shard files in the subfolder
        return cls(
            model_path=model_path,
            **kwargs,
        )

__init__(model_path, *, n_gpu_layers=0, split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER, main_gpu=0, tensor_split=None, rpc_servers=None, vocab_only=False, use_mmap=True, use_mlock=False, kv_overrides=None, seed=llama_cpp.LLAMA_DEFAULT_SEED, n_ctx=512, n_batch=512, n_ubatch=512, n_threads=None, n_threads_batch=None, rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED, rope_freq_base=0.0, rope_freq_scale=0.0, yarn_ext_factor=-1.0, yarn_attn_factor=1.0, yarn_beta_fast=32.0, yarn_beta_slow=1.0, yarn_orig_ctx=0, logits_all=False, embedding=False, offload_kqv=True, flash_attn=False, no_perf=False, last_n_tokens_size=64, lora_base=None, lora_scale=1.0, lora_path=None, numa=False, chat_format=None, chat_handler=None, draft_model=None, tokenizer=None, type_k=None, type_v=None, spm_infill=False, verbose=True, **kwargs)

Load a llama.cpp model from model_path.

Examples:

Basic usage

>>> import llama_cpp
>>> model = llama_cpp.Llama(
...     model_path="path/to/model",
... )
>>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])
the lazy dog

Loading a chat model

>>> import llama_cpp
>>> model = llama_cpp.Llama(
...     model_path="path/to/model",
...     chat_format="llama-2",
... )
>>> print(model.create_chat_completion(
...     messages=[{
...         "role": "user",
...         "content": "what is the meaning of life?"
...     }]
... ))

Parameters:

  • model_path (str) –

    Path to the model.

  • n_gpu_layers (int, default: 0 ) –

    Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.

  • split_mode (int, default: LLAMA_SPLIT_MODE_LAYER ) –

    How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.

  • main_gpu (int, default: 0 ) –

    main_gpu interpretation depends on split_mode: LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_MODE_LAYER: ignored

  • tensor_split (Optional[List[float]], default: None ) –

    How split tensors should be distributed across GPUs. If None, the model is not split.

  • rpc_servers (Optional[str], default: None ) –

    Comma separated list of RPC servers to use for offloading

  • vocab_only (bool, default: False ) –

    Only load the vocabulary no weights.

  • use_mmap (bool, default: True ) –

    Use mmap if possible.

  • use_mlock (bool, default: False ) –

    Force the system to keep the model in RAM.

  • kv_overrides (Optional[Dict[str, Union[bool, int, float, str]]], default: None ) –

    Key-value overrides for the model.

  • seed (int, default: LLAMA_DEFAULT_SEED ) –

    RNG seed, -1 for random

  • n_ctx (int, default: 512 ) –

    Text context, 0 = from model

  • n_batch (int, default: 512 ) –

    Prompt processing maximum batch size

  • n_ubatch (int, default: 512 ) –

    Physical batch size

  • n_threads (Optional[int], default: None ) –

    Number of threads to use for generation

  • n_threads_batch (Optional[int], default: None ) –

    Number of threads to use for batch processing

  • rope_scaling_type (Optional[int], default: LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED ) –

    RoPE scaling type, from enum llama_rope_scaling_type. ref: https://github.com/ggerganov/llama.cpp/pull/2054

  • pooling_type (int, default: LLAMA_POOLING_TYPE_UNSPECIFIED ) –

    Pooling type, from enum llama_pooling_type.

  • rope_freq_base (float, default: 0.0 ) –

    RoPE base frequency, 0 = from model

  • rope_freq_scale (float, default: 0.0 ) –

    RoPE frequency scaling factor, 0 = from model

  • yarn_ext_factor (float, default: -1.0 ) –

    YaRN extrapolation mix factor, negative = from model

  • yarn_attn_factor (float, default: 1.0 ) –

    YaRN magnitude scaling factor

  • yarn_beta_fast (float, default: 32.0 ) –

    YaRN low correction dim

  • yarn_beta_slow (float, default: 1.0 ) –

    YaRN high correction dim

  • yarn_orig_ctx (int, default: 0 ) –

    YaRN original context size

  • logits_all (bool, default: False ) –

    Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.

  • embedding (bool, default: False ) –

    Embedding mode only.

  • offload_kqv (bool, default: True ) –

    Offload K, Q, V to GPU.

  • flash_attn (bool, default: False ) –

    Use flash attention.

  • no_perf (bool, default: False ) –

    Measure performance timings.

  • last_n_tokens_size (int, default: 64 ) –

    Maximum number of tokens to keep in the last_n_tokens deque.

  • lora_base (Optional[str], default: None ) –

    Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.

  • lora_path (Optional[str], default: None ) –

    Path to a LoRA file to apply to the model.

  • numa (Union[bool, int], default: False ) –

    numa policy

  • chat_format (Optional[str], default: None ) –

    String specifying the chat format to use when calling create_chat_completion.

  • chat_handler (Optional[LlamaChatCompletionHandler], default: None ) –

    Optional chat handler to use when calling create_chat_completion.

  • draft_model (Optional[LlamaDraftModel], default: None ) –

    Optional draft model to use for speculative decoding.

  • tokenizer (Optional[BaseLlamaTokenizer], default: None ) –

    Optional tokenizer to override the default tokenizer from llama.cpp.

  • verbose (bool, default: True ) –

    Print verbose output to stderr.

  • type_k (Optional[int], default: None ) –

    KV cache data type for K (default: f16)

  • type_v (Optional[int], default: None ) –

    KV cache data type for V (default: f16)

  • spm_infill (bool, default: False ) –

    Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.

Raises:

  • ValueError –

    If the model path does not exist.

Returns:

  • –

    A Llama instance.

Source code in llama_cpp/llama.py
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
def __init__(
    self,
    model_path: str,
    *,
    # Model Params
    n_gpu_layers: int = 0,
    split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER,
    main_gpu: int = 0,
    tensor_split: Optional[List[float]] = None,
    rpc_servers: Optional[str] = None,
    vocab_only: bool = False,
    use_mmap: bool = True,
    use_mlock: bool = False,
    kv_overrides: Optional[Dict[str, Union[bool, int, float, str]]] = None,
    # Context Params
    seed: int = llama_cpp.LLAMA_DEFAULT_SEED,
    n_ctx: int = 512,
    n_batch: int = 512,
    n_ubatch: int = 512,
    n_threads: Optional[int] = None,
    n_threads_batch: Optional[int] = None,
    rope_scaling_type: Optional[
        int
    ] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
    pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
    rope_freq_base: float = 0.0,
    rope_freq_scale: float = 0.0,
    yarn_ext_factor: float = -1.0,
    yarn_attn_factor: float = 1.0,
    yarn_beta_fast: float = 32.0,
    yarn_beta_slow: float = 1.0,
    yarn_orig_ctx: int = 0,
    logits_all: bool = False,
    embedding: bool = False,
    offload_kqv: bool = True,
    flash_attn: bool = False,
    # Sampling Params
    no_perf: bool = False,
    last_n_tokens_size: int = 64,
    # LoRA Params
    lora_base: Optional[str] = None,
    lora_scale: float = 1.0,
    lora_path: Optional[str] = None,
    # Backend Params
    numa: Union[bool, int] = False,
    # Chat Format Params
    chat_format: Optional[str] = None,
    chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None,
    # Speculative Decoding
    draft_model: Optional[LlamaDraftModel] = None,
    # Tokenizer Override
    tokenizer: Optional[BaseLlamaTokenizer] = None,
    # KV cache quantization
    type_k: Optional[int] = None,
    type_v: Optional[int] = None,
    # Misc
    spm_infill: bool = False,
    verbose: bool = True,
    # Extra Params
    **kwargs,  # type: ignore
):
    """Load a llama.cpp model from `model_path`.

    Examples:
        Basic usage

        >>> import llama_cpp
        >>> model = llama_cpp.Llama(
        ...     model_path="path/to/model",
        ... )
        >>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])
        the lazy dog

        Loading a chat model

        >>> import llama_cpp
        >>> model = llama_cpp.Llama(
        ...     model_path="path/to/model",
        ...     chat_format="llama-2",
        ... )
        >>> print(model.create_chat_completion(
        ...     messages=[{
        ...         "role": "user",
        ...         "content": "what is the meaning of life?"
        ...     }]
        ... ))

    Args:
        model_path: Path to the model.
        n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
        split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.
        main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_MODE_LAYER: ignored
        tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.
        rpc_servers: Comma separated list of RPC servers to use for offloading
        vocab_only: Only load the vocabulary no weights.
        use_mmap: Use mmap if possible.
        use_mlock: Force the system to keep the model in RAM.
        kv_overrides: Key-value overrides for the model.
        seed: RNG seed, -1 for random
        n_ctx: Text context, 0 = from model
        n_batch: Prompt processing maximum batch size
        n_ubatch: Physical batch size
        n_threads: Number of threads to use for generation
        n_threads_batch: Number of threads to use for batch processing
        rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054
        pooling_type: Pooling type, from `enum llama_pooling_type`.
        rope_freq_base: RoPE base frequency, 0 = from model
        rope_freq_scale: RoPE frequency scaling factor, 0 = from model
        yarn_ext_factor: YaRN extrapolation mix factor, negative = from model
        yarn_attn_factor: YaRN magnitude scaling factor
        yarn_beta_fast: YaRN low correction dim
        yarn_beta_slow: YaRN high correction dim
        yarn_orig_ctx: YaRN original context size
        logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
        embedding: Embedding mode only.
        offload_kqv: Offload K, Q, V to GPU.
        flash_attn: Use flash attention.
        no_perf: Measure performance timings.
        last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
        lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
        lora_path: Path to a LoRA file to apply to the model.
        numa: numa policy
        chat_format: String specifying the chat format to use when calling create_chat_completion.
        chat_handler: Optional chat handler to use when calling create_chat_completion.
        draft_model: Optional draft model to use for speculative decoding.
        tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.
        verbose: Print verbose output to stderr.
        type_k: KV cache data type for K (default: f16)
        type_v: KV cache data type for V (default: f16)
        spm_infill: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.

    Raises:
        ValueError: If the model path does not exist.

    Returns:
        A Llama instance.
    """
    self.verbose = verbose
    self._stack = contextlib.ExitStack()

    set_verbose(verbose)

    if not Llama.__backend_initialized:
        with suppress_stdout_stderr(disable=verbose):
            llama_cpp.llama_backend_init()
        Llama.__backend_initialized = True

    if isinstance(numa, bool):
        self.numa = (
            llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE
            if numa
            else llama_cpp.GGML_NUMA_STRATEGY_DISABLED
        )
    else:
        self.numa = numa

    if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED:
        with suppress_stdout_stderr(disable=verbose):
            llama_cpp.llama_numa_init(self.numa)

    self.model_path = model_path

    # Model Params
    self.model_params = llama_cpp.llama_model_default_params()
    self.model_params.n_gpu_layers = (
        0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers
    )  # 0x7FFFFFFF is INT32 max, will be auto set to all layers
    self.model_params.split_mode = split_mode
    self.model_params.main_gpu = main_gpu
    if rpc_servers is not None:
        self.model_params.rpc_servers = rpc_servers.encode("utf-8")
        self._rpc_servers = rpc_servers
    else:
        self._rpc_servers = None
    self.tensor_split = tensor_split
    self._c_tensor_split = None
    if self.tensor_split is not None:
        if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES:
            raise ValueError(
                f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}"
            )
        # Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
        FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES
        self._c_tensor_split = FloatArray(
            *tensor_split  # type: ignore
        )  # keep a reference to the array so it is not gc'd
        self.model_params.tensor_split = self._c_tensor_split
    self.model_params.vocab_only = vocab_only
    self.model_params.use_mmap = use_mmap if lora_path is None else False
    self.model_params.use_mlock = use_mlock

    # kv_overrides is the original python dict
    self.kv_overrides = kv_overrides
    if kv_overrides is not None:
        # _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structs
        kvo_array_len = len(kv_overrides) + 1  # for sentinel element
        self._kv_overrides_array = (
            llama_cpp.llama_model_kv_override * kvo_array_len
        )()

        for i, (k, v) in enumerate(kv_overrides.items()):
            self._kv_overrides_array[i].key = k.encode("utf-8")
            if isinstance(v, bool):
                self._kv_overrides_array[
                    i
                ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL
                self._kv_overrides_array[i].value.val_bool = v
            elif isinstance(v, int):
                self._kv_overrides_array[
                    i
                ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT
                self._kv_overrides_array[i].value.val_i64 = v
            elif isinstance(v, float):
                self._kv_overrides_array[
                    i
                ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT
                self._kv_overrides_array[i].value.val_f64 = v
            elif isinstance(v, str):  # type: ignore
                v_bytes = v.encode("utf-8")
                if len(v_bytes) > 128:  # TODO: Make this a constant
                    raise ValueError(f"Value for {k} is too long: {v}")
                v_bytes = v_bytes.ljust(128, b"\0")
                self._kv_overrides_array[
                    i
                ].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_STR
                # copy min(v_bytes, 128) to str_value
                address = typing.cast(
                    int,
                    ctypes.addressof(self._kv_overrides_array[i].value)
                    + llama_cpp.llama_model_kv_override_value.val_str.offset,
                )
                buffer_start = ctypes.cast(address, ctypes.POINTER(ctypes.c_char))
                ctypes.memmove(
                    buffer_start,
                    v_bytes,
                    128,
                )
            else:
                raise ValueError(f"Unknown value type for {k}: {v}")

        self._kv_overrides_array[
            -1
        ].key = b"\0"  # ensure sentinel element is zeroed
        self.model_params.kv_overrides = self._kv_overrides_array

    self.n_batch = min(n_ctx, n_batch)  # ???
    self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
    self.n_threads_batch = n_threads_batch or multiprocessing.cpu_count()

    # Used by the sampler
    self._seed = seed or llama_cpp.LLAMA_DEFAULT_SEED

    # Context Params
    self.context_params = llama_cpp.llama_context_default_params()
    self.context_params.n_ctx = n_ctx
    self.context_params.n_batch = self.n_batch
    self.context_params.n_ubatch = min(self.n_batch, n_ubatch)
    self.context_params.n_threads = self.n_threads
    self.context_params.n_threads_batch = self.n_threads_batch
    self.context_params.rope_scaling_type = (
        rope_scaling_type
        if rope_scaling_type is not None
        else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
    )
    self.context_params.pooling_type = pooling_type
    self.context_params.rope_freq_base = (
        rope_freq_base if rope_freq_base != 0.0 else 0
    )
    self.context_params.rope_freq_scale = (
        rope_freq_scale if rope_freq_scale != 0.0 else 0
    )
    self.context_params.yarn_ext_factor = (
        yarn_ext_factor if yarn_ext_factor != 0.0 else 0
    )
    self.context_params.yarn_attn_factor = (
        yarn_attn_factor if yarn_attn_factor != 0.0 else 0
    )
    self.context_params.yarn_beta_fast = (
        yarn_beta_fast if yarn_beta_fast != 0.0 else 0
    )
    self.context_params.yarn_beta_slow = (
        yarn_beta_slow if yarn_beta_slow != 0.0 else 0
    )
    self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
    self.context_params.logits_all = (
        logits_all if draft_model is None else True
    )  # Must be set to True for speculative decoding
    self.context_params.embeddings = embedding  # TODO: Rename to embeddings
    self.context_params.offload_kqv = offload_kqv
    self.context_params.flash_attn = flash_attn
    #  KV cache quantization
    if type_k is not None:
        self.context_params.type_k = type_k
    if type_v is not None:
        self.context_params.type_v = type_v
    # Sampling Params
    self.context_params.no_perf = no_perf
    self.last_n_tokens_size = last_n_tokens_size

    self.cache: Optional[BaseLlamaCache] = None

    self.lora_base = lora_base
    self.lora_scale = lora_scale
    self.lora_path = lora_path

    self.spm_infill = spm_infill

    if not os.path.exists(model_path):
        raise ValueError(f"Model path does not exist: {model_path}")

    self._model = self._stack.enter_context(
        contextlib.closing(
            internals.LlamaModel(
                path_model=self.model_path,
                params=self.model_params,
                verbose=self.verbose,
            )
        )
    )

    # Override tokenizer
    self.tokenizer_ = tokenizer or LlamaTokenizer(self)

    # Set the default value for the context and correct the batch
    if n_ctx == 0:
        n_ctx = self._model.n_ctx_train()
        self.n_batch = min(n_ctx, n_batch)
        self.context_params.n_ctx = self._model.n_ctx_train()
        self.context_params.n_batch = self.n_batch
        self.context_params.n_ubatch = min(self.n_batch, n_ubatch)

    self._ctx = self._stack.enter_context(
        contextlib.closing(
            internals.LlamaContext(
                model=self._model,
                params=self.context_params,
                verbose=self.verbose,
            )
        )
    )

    self._batch = self._stack.enter_context(
        contextlib.closing(
            internals.LlamaBatch(
                n_tokens=self.n_batch,
                embd=0,
                n_seq_max=self.context_params.n_ctx,
                verbose=self.verbose,
            )
        )
    )

    self._lora_adapter: Optional[llama_cpp.llama_adapter_lora_p] = None

    if self.lora_path:
        self._lora_adapter = llama_cpp.llama_adapter_lora_init(
            self._model.model,
            self.lora_path.encode("utf-8"),
        )
        if self._lora_adapter is None:
            raise RuntimeError(
                f"Failed to initialize LoRA adapter from lora path: {self.lora_path}"
            )

        def free_lora_adapter():
            if self._lora_adapter is None:
                return
            llama_cpp.llama_adapter_lora_free(self._lora_adapter)
            self._lora_adapter = None

        self._stack.callback(free_lora_adapter)

        if llama_cpp.llama_set_adapter_lora(
            self._ctx.ctx, self._lora_adapter, self.lora_scale
        ):
            raise RuntimeError(
                f"Failed to set LoRA adapter from lora path: {self.lora_path}"
            )

    if self.verbose:
        print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr)

    self.chat_format = chat_format
    self.chat_handler = chat_handler
    self._chat_handlers: Dict[
        str, llama_chat_format.LlamaChatCompletionHandler
    ] = {}

    self.draft_model = draft_model

    self._n_vocab = self.n_vocab()
    self._n_ctx = self.n_ctx()

    self._token_nl = self.token_nl()
    self._token_eos = self.token_eos()

    self._candidates = internals.LlamaTokenDataArray(n_vocab=self._n_vocab)

    self.n_tokens = 0
    self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc)
    self.scores: npt.NDArray[np.single] = np.ndarray(
        (n_ctx if logits_all == True else n_batch, self._n_vocab), dtype=np.single
    )

    self._mirostat_mu = ctypes.c_float(
        2.0 * 5.0
    )  # TODO: Move this to sampling context

    try:
        self.metadata = self._model.metadata()
    except Exception as e:
        self.metadata = {}
        if self.verbose:
            print(f"Failed to load metadata: {e}", file=sys.stderr)

    if self.verbose:
        print(f"Model metadata: {self.metadata}", file=sys.stderr)

    eos_token_id = self.token_eos()
    bos_token_id = self.token_bos()

    eos_token = (
        self._model.token_get_text(eos_token_id) if eos_token_id != -1 else ""
    )
    bos_token = (
        self._model.token_get_text(bos_token_id) if bos_token_id != -1 else ""
    )

    # Unfortunately the llama.cpp API does not return metadata arrays, so we can't get template names from tokenizer.chat_templates
    template_choices = dict(
        (name[10:], template)
        for name, template in self.metadata.items()
        if name.startswith("tokenizer.chat_template.")
    )

    if "tokenizer.chat_template" in self.metadata:
        template_choices["chat_template.default"] = self.metadata[
            "tokenizer.chat_template"
        ]

    if self.verbose and template_choices:
        print(
            f"Available chat formats from metadata: {', '.join(template_choices.keys())}",
            file=sys.stderr,
        )

    for name, template in template_choices.items():
        self._chat_handlers[name] = llama_chat_format.Jinja2ChatFormatter(
            template=template,
            eos_token=eos_token,
            bos_token=bos_token,
            stop_token_ids=[eos_token_id],
        ).to_chat_handler()

    if (
        self.chat_format is None
        and self.chat_handler is None
        and "chat_template.default" in template_choices
    ):
        chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata(
            self.metadata
        )

        if chat_format is not None:
            self.chat_format = chat_format
            if self.verbose:
                print(f"Guessed chat format: {chat_format}", file=sys.stderr)
        else:
            if self.verbose:
                print(
                    f"Using gguf chat template: {template_choices['chat_template.default']}",
                    file=sys.stderr,
                )
                print(f"Using chat eos_token: {eos_token}", file=sys.stderr)
                print(f"Using chat bos_token: {bos_token}", file=sys.stderr)

            self.chat_format = "chat_template.default"

    if self.chat_format is None and self.chat_handler is None:
        self.chat_format = "llama-2"
        if self.verbose:
            print(
                f"Using fallback chat format: {self.chat_format}", file=sys.stderr
            )

    self._sampler = None

tokenize(text, add_bos=True, special=False)

Tokenize a string.

Parameters:

  • text (bytes) –

    The utf-8 encoded string to tokenize.

  • add_bos (bool, default: True ) –

    Whether to add a beginning of sequence token.

  • special (bool, default: False ) –

    Whether to tokenize special tokens.

Raises:

Returns:

  • List[int] –

    A list of tokens.

Source code in llama_cpp/llama.py
def tokenize(
    self, text: bytes, add_bos: bool = True, special: bool = False
) -> List[int]:
    """Tokenize a string.

    Args:
        text: The utf-8 encoded string to tokenize.
        add_bos: Whether to add a beginning of sequence token.
        special: Whether to tokenize special tokens.

    Raises:
        RuntimeError: If the tokenization failed.

    Returns:
        A list of tokens.
    """
    return self.tokenizer_.tokenize(text, add_bos, special)

detokenize(tokens, prev_tokens=None, special=False)

Detokenize a list of tokens.

Parameters:

  • tokens (List[int]) –

    The list of tokens to detokenize.

  • prev_tokens (Optional[List[int]], default: None ) –

    The list of previous tokens. Offset mapping will be performed if provided.

  • special (bool, default: False ) –

    Whether to detokenize special tokens.

Returns:

  • bytes –

    The detokenized string.

Source code in llama_cpp/llama.py
def detokenize(
    self,
    tokens: List[int],
    prev_tokens: Optional[List[int]] = None,
    special: bool = False,
) -> bytes:
    """Detokenize a list of tokens.

    Args:
        tokens: The list of tokens to detokenize.
        prev_tokens: The list of previous tokens. Offset mapping will be performed if provided.
        special: Whether to detokenize special tokens.

    Returns:
        The detokenized string.
    """
    return self.tokenizer_.detokenize(
        tokens, prev_tokens=prev_tokens, special=special
    )

reset()

Reset the model state.

Source code in llama_cpp/llama.py
def reset(self):
    """Reset the model state."""
    self.n_tokens = 0

eval(tokens)

Evaluate a list of tokens.

Parameters:

  • tokens (Sequence[int]) –

    The list of tokens to evaluate.

Source code in llama_cpp/llama.py
def eval(self, tokens: Sequence[int]):
    """Evaluate a list of tokens.

    Args:
        tokens: The list of tokens to evaluate.
    """
    self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
    for i in range(0, len(tokens), self.n_batch):
        batch = tokens[i : min(len(tokens), i + self.n_batch)]
        n_past = self.n_tokens
        n_tokens = len(batch)
        self._batch.set_batch(
            batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
        )
        self._ctx.decode(self._batch)
        # Save tokens
        self.input_ids[n_past : n_past + n_tokens] = batch
        # Save logits
        if self.context_params.logits_all:
            rows = n_tokens
            cols = self._n_vocab
            logits = np.ctypeslib.as_array(
                self._ctx.get_logits(), shape=(rows * cols,)
            )
            self.scores[n_past : n_past + n_tokens, :].reshape(-1)[::] = logits
        else:
            # rows = 1
            # cols = self._n_vocab
            # logits = np.ctypeslib.as_array(
            #     self._ctx.get_logits(), shape=(rows * cols,)
            # )
            # self.scores[n_past + n_tokens - 1, :].reshape(-1)[::] = logits
            # NOTE: Now that sampling is done inside the sampler, logits are only needed for logprobs which requires logits_all
            pass
        # Update n_tokens
        self.n_tokens += n_tokens

sample(top_k=40, top_p=0.95, min_p=0.05, typical_p=1.0, temp=0.8, repeat_penalty=1.0, frequency_penalty=0.0, presence_penalty=0.0, tfs_z=1.0, mirostat_mode=0, mirostat_eta=0.1, mirostat_tau=5.0, penalize_nl=True, logits_processor=None, grammar=None, idx=None)

Sample a token from the model.

Parameters:

  • top_k (int, default: 40 ) –

    The top-k sampling parameter.

  • top_p (float, default: 0.95 ) –

    The top-p sampling parameter.

  • temp (float, default: 0.8 ) –

    The temperature parameter.

  • repeat_penalty (float, default: 1.0 ) –

    The repeat penalty parameter.

Returns:

  • –

    The sampled token.

Source code in llama_cpp/llama.py
def sample(
    self,
    top_k: int = 40,
    top_p: float = 0.95,
    min_p: float = 0.05,
    typical_p: float = 1.0,
    temp: float = 0.80,
    repeat_penalty: float = 1.0,
    frequency_penalty: float = 0.0,
    presence_penalty: float = 0.0,
    tfs_z: float = 1.0,
    mirostat_mode: int = 0,
    mirostat_eta: float = 0.1,
    mirostat_tau: float = 5.0,
    penalize_nl: bool = True,
    logits_processor: Optional[LogitsProcessorList] = None,
    grammar: Optional[LlamaGrammar] = None,
    idx: Optional[int] = None,
):
    """Sample a token from the model.

    Args:
        top_k: The top-k sampling parameter.
        top_p: The top-p sampling parameter.
        temp: The temperature parameter.
        repeat_penalty: The repeat penalty parameter.

    Returns:
        The sampled token.
    """
    assert self.n_tokens > 0

    tmp_sampler = False

    if self._sampler is None:
        tmp_sampler = True
        self._sampler = self._init_sampler(
            top_k=top_k,
            top_p=top_p,
            min_p=min_p,
            typical_p=typical_p,
            temp=temp,
            repeat_penalty=repeat_penalty,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
            tfs_z=tfs_z,
            mirostat_mode=mirostat_mode,
            mirostat_tau=mirostat_tau,
            mirostat_eta=mirostat_eta,
            penalize_nl=penalize_nl,
            logits_processor=logits_processor,
            grammar=grammar,
        )

    ridx = idx - self.n_tokens if idx is not None else -1

    assert self.ctx is not None
    token = self._sampler.sample(self._ctx, ridx)
    if tmp_sampler:
        self._sampler = None
    return token

generate(tokens, top_k=40, top_p=0.95, min_p=0.05, typical_p=1.0, temp=0.8, repeat_penalty=1.0, reset=True, frequency_penalty=0.0, presence_penalty=0.0, tfs_z=1.0, mirostat_mode=0, mirostat_tau=5.0, mirostat_eta=0.1, penalize_nl=True, logits_processor=None, stopping_criteria=None, grammar=None)

Create a generator of tokens from a prompt.

Examples:

>>> llama = Llama("models/ggml-7b.bin")
>>> tokens = llama.tokenize(b"Hello, world!")
>>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.0):
...     print(llama.detokenize([token]))

Parameters:

  • tokens (Sequence[int]) –

    The prompt tokens.

  • top_k (int, default: 40 ) –

    The top-k sampling parameter.

  • top_p (float, default: 0.95 ) –

    The top-p sampling parameter.

  • temp (float, default: 0.8 ) –

    The temperature parameter.

  • repeat_penalty (float, default: 1.0 ) –

    The repeat penalty parameter.

  • reset (bool, default: True ) –

    Whether to reset the model state.

Yields:

  • int –

    The generated tokens.

Source code in llama_cpp/llama.py
def generate(
    self,
    tokens: Sequence[int],
    top_k: int = 40,
    top_p: float = 0.95,
    min_p: float = 0.05,
    typical_p: float = 1.0,
    temp: float = 0.80,
    repeat_penalty: float = 1.0,
    reset: bool = True,
    frequency_penalty: float = 0.0,
    presence_penalty: float = 0.0,
    tfs_z: float = 1.0,
    mirostat_mode: int = 0,
    mirostat_tau: float = 5.0,
    mirostat_eta: float = 0.1,
    penalize_nl: bool = True,
    logits_processor: Optional[LogitsProcessorList] = None,
    stopping_criteria: Optional[StoppingCriteriaList] = None,
    grammar: Optional[LlamaGrammar] = None,
) -> Generator[int, Optional[Sequence[int]], None]:
    """Create a generator of tokens from a prompt.

    Examples:
        >>> llama = Llama("models/ggml-7b.bin")
        >>> tokens = llama.tokenize(b"Hello, world!")
        >>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.0):
        ...     print(llama.detokenize([token]))

    Args:
        tokens: The prompt tokens.
        top_k: The top-k sampling parameter.
        top_p: The top-p sampling parameter.
        temp: The temperature parameter.
        repeat_penalty: The repeat penalty parameter.
        reset: Whether to reset the model state.

    Yields:
        The generated tokens.
    """
    # Reset mirostat sampling
    self._mirostat_mu = ctypes.c_float(2.0 * mirostat_tau)
    self._sampler = self._init_sampler(
        top_k=top_k,
        top_p=top_p,
        min_p=min_p,
        typical_p=typical_p,
        temp=temp,
        repeat_penalty=repeat_penalty,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty,
        tfs_z=tfs_z,
        mirostat_mode=mirostat_mode,
        mirostat_tau=mirostat_tau,
        mirostat_eta=mirostat_eta,
        penalize_nl=penalize_nl,
        logits_processor=logits_processor,
        grammar=grammar,
    )

    # Check for kv cache prefix match
    if reset and self.n_tokens > 0:
        longest_prefix = 0
        for a, b in zip(self._input_ids, tokens[:-1]):
            if a == b:
                longest_prefix += 1
            else:
                break
        if longest_prefix > 0:
            reset = False
            tokens = tokens[longest_prefix:]
            self.n_tokens = longest_prefix
            if self.verbose:
                print(
                    f"Llama.generate: {longest_prefix} prefix-match hit, "
                    f"remaining {len(tokens)} prompt tokens to eval",
                    file=sys.stderr,
                )

    # Reset the model state
    if reset:
        self.reset()

    # # Reset the grammar
    # if grammar is not None:
    #     grammar.reset()

    sample_idx = self.n_tokens + len(tokens) - 1
    tokens = list(tokens)

    # Eval and sample
    while True:
        self.eval(tokens)
        while sample_idx < self.n_tokens:
            token = self.sample(
                top_k=top_k,
                top_p=top_p,
                min_p=min_p,
                typical_p=typical_p,
                temp=temp,
                repeat_penalty=repeat_penalty,
                frequency_penalty=frequency_penalty,
                presence_penalty=presence_penalty,
                tfs_z=tfs_z,
                mirostat_mode=mirostat_mode,
                mirostat_tau=mirostat_tau,
                mirostat_eta=mirostat_eta,
                logits_processor=logits_processor,
                grammar=grammar,
                penalize_nl=penalize_nl,
                idx=sample_idx,
            )

            sample_idx += 1
            if stopping_criteria is not None and stopping_criteria(
                self._input_ids[: sample_idx], self._scores[sample_idx - self.n_tokens, :]
            ):
                return
            tokens_or_none = yield token
            tokens.clear()
            tokens.append(token)
            if tokens_or_none is not None:
                tokens.extend(tokens_or_none)

            if sample_idx < self.n_tokens and token != self._input_ids[sample_idx]:
                self.n_tokens = sample_idx
                self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
                break

        if self.draft_model is not None:
            self.input_ids[self.n_tokens : self.n_tokens + len(tokens)] = tokens
            draft_tokens = self.draft_model(
                self.input_ids[: self.n_tokens + len(tokens)]
            )
            tokens.extend(
                draft_tokens.astype(int)[
                    : self._n_ctx - self.n_tokens - len(tokens)
                ]
            )

create_embedding(input, model=None)

Embed a string.

Parameters:

  • input (Union[str, List[str]]) –

    The utf-8 encoded string to embed.

Returns:

Source code in llama_cpp/llama.py
def create_embedding(
    self, input: Union[str, List[str]], model: Optional[str] = None
) -> CreateEmbeddingResponse:
    """Embed a string.

    Args:
        input: The utf-8 encoded string to embed.

    Returns:
        An embedding object.
    """
    model_name: str = model if model is not None else self.model_path

    input = input if isinstance(input, list) else [input]

    # get numeric embeddings
    embeds: Union[List[List[float]], List[List[List[float]]]]
    total_tokens: int
    embeds, total_tokens = self.embed(input, return_count=True)  # type: ignore

    # convert to CreateEmbeddingResponse
    data: List[Embedding] = [
        {
            "object": "embedding",
            "embedding": emb,
            "index": idx,
        }
        for idx, emb in enumerate(embeds)
    ]

    return {
        "object": "list",
        "data": data,
        "model": model_name,
        "usage": {
            "prompt_tokens": total_tokens,
            "total_tokens": total_tokens,
        },
    }

embed(input, normalize=False, truncate=True, return_count=False)

Embed a string.

Parameters:

  • input (Union[str, List[str]]) –

    The utf-8 encoded string to embed.

Returns:

  • –

    A list of embeddings

Source code in llama_cpp/llama.py
def embed(
    self,
    input: Union[str, List[str]],
    normalize: bool = False,
    truncate: bool = True,
    return_count: bool = False,
):
    """Embed a string.

    Args:
        input: The utf-8 encoded string to embed.

    Returns:
        A list of embeddings
    """
    n_embd = self.n_embd()
    n_batch = self.n_batch

    # get pooling information
    pooling_type = self.pooling_type()
    logits_all = pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE

    if self.context_params.embeddings is False:
        raise RuntimeError(
            "Llama model must be created with embedding=True to call this method"
        )

    if self.verbose:
        llama_cpp.llama_perf_context_reset(self._ctx.ctx)

    if isinstance(input, str):
        inputs = [input]
    else:
        inputs = input

    # reset batch
    self._batch.reset()

    # decode and fetch embeddings
    data: Union[List[List[float]], List[List[List[float]]]] = []

    def decode_batch(seq_sizes: List[int]):
        llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
        self._ctx.decode(self._batch)
        self._batch.reset()

        # store embeddings
        if pooling_type == llama_cpp.LLAMA_POOLING_TYPE_NONE:
            pos: int = 0
            for i, size in enumerate(seq_sizes):
                ptr = llama_cpp.llama_get_embeddings(self._ctx.ctx)
                embedding: List[List[float]] = [
                    ptr[pos + j * n_embd : pos + (j + 1) * n_embd]
                    for j in range(size)
                ]
                if normalize:
                    embedding = [
                        internals.normalize_embedding(e) for e in embedding
                    ]
                data.append(embedding)
                pos += size
        else:
            for i in range(len(seq_sizes)):
                ptr = llama_cpp.llama_get_embeddings_seq(self._ctx.ctx, i)
                embedding: List[float] = ptr[:n_embd]
                if normalize:
                    embedding = internals.normalize_embedding(embedding)
                data.append(embedding)

    # init state
    total_tokens = 0
    s_batch = []
    t_batch = 0
    p_batch = 0

    # accumulate batches and encode
    for text in inputs:
        tokens = self.tokenize(text.encode("utf-8"))
        if truncate:
            tokens = tokens[:n_batch]

        n_tokens = len(tokens)
        total_tokens += n_tokens

        # check for overrun
        if n_tokens > n_batch:
            raise ValueError(
                f"Requested tokens ({n_tokens}) exceed batch size of {n_batch}"
            )

        # time to eval batch
        if t_batch + n_tokens > n_batch:
            decode_batch(s_batch)
            s_batch = []
            t_batch = 0
            p_batch = 0

        # add to batch
        self._batch.add_sequence(tokens, p_batch, logits_all)

        # update batch stats
        s_batch.append(n_tokens)
        t_batch += n_tokens
        p_batch += 1

    # hanlde last batch
    decode_batch(s_batch)

    if self.verbose:
        llama_cpp.llama_perf_context_print(self._ctx.ctx)

    output = data[0] if isinstance(input, str) else data

    llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
    self.reset()

    if return_count:
        return output, total_tokens
    else:
        return output

create_completion(prompt, suffix=None, max_tokens=16, temperature=0.8, top_p=0.95, min_p=0.05, typical_p=1.0, logprobs=None, echo=False, stop=[], frequency_penalty=0.0, presence_penalty=0.0, repeat_penalty=1.0, top_k=40, stream=False, seed=None, tfs_z=1.0, mirostat_mode=0, mirostat_tau=5.0, mirostat_eta=0.1, model=None, stopping_criteria=None, logits_processor=None, grammar=None, logit_bias=None)

Generate text from a prompt.

Parameters:

  • prompt (Union[str, List[int]]) –

    The prompt to generate text from.

  • suffix (Optional[str], default: None ) –

    A suffix to append to the generated text. If None, no suffix is appended.

  • max_tokens (Optional[int], default: 16 ) –

    The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.

  • temperature (float, default: 0.8 ) –

    The temperature to use for sampling.

  • top_p (float, default: 0.95 ) –

    The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751

  • min_p (float, default: 0.05 ) –

    The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841

  • typical_p (float, default: 1.0 ) –

    The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.

  • logprobs (Optional[int], default: None ) –

    The number of logprobs to return. If None, no logprobs are returned.

  • echo (bool, default: False ) –

    Whether to echo the prompt.

  • stop (Optional[Union[str, List[str]]], default: [] ) –

    A list of strings to stop generation when encountered.

  • frequency_penalty (float, default: 0.0 ) –

    The penalty to apply to tokens based on their frequency in the prompt.

  • presence_penalty (float, default: 0.0 ) –

    The penalty to apply to tokens based on their presence in the prompt.

  • repeat_penalty (float, default: 1.0 ) –

    The penalty to apply to repeated tokens.

  • top_k (int, default: 40 ) –

    The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751

  • stream (bool, default: False ) –

    Whether to stream the results.

  • seed (Optional[int], default: None ) –

    The seed to use for sampling.

  • tfs_z (float, default: 1.0 ) –

    The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.

  • mirostat_mode (int, default: 0 ) –

    The mirostat sampling mode.

  • mirostat_tau (float, default: 5.0 ) –

    The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.

  • mirostat_eta (float, default: 0.1 ) –

    The learning rate used to update mu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu to be updated more quickly, while a smaller learning rate will result in slower updates.

  • model (Optional[str], default: None ) –

    The name to use for the model in the completion object.

  • stopping_criteria (Optional[StoppingCriteriaList], default: None ) –

    A list of stopping criteria to use.

  • logits_processor (Optional[LogitsProcessorList], default: None ) –

    A list of logits processors to use.

  • grammar (Optional[LlamaGrammar], default: None ) –

    A grammar to use for constrained sampling.

  • logit_bias (Optional[Dict[int, float]], default: None ) –

    A logit bias to use.

Raises:

  • ValueError –

    If the requested tokens exceed the context window.

  • RuntimeError –

    If the prompt fails to tokenize or the model fails to evaluate the prompt.

Returns:

Source code in llama_cpp/llama.py
def create_completion(
    self,
    prompt: Union[str, List[int]],
    suffix: Optional[str] = None,
    max_tokens: Optional[int] = 16,
    temperature: float = 0.8,
    top_p: float = 0.95,
    min_p: float = 0.05,
    typical_p: float = 1.0,
    logprobs: Optional[int] = None,
    echo: bool = False,
    stop: Optional[Union[str, List[str]]] = [],
    frequency_penalty: float = 0.0,
    presence_penalty: float = 0.0,
    repeat_penalty: float = 1.0,
    top_k: int = 40,
    stream: bool = False,
    seed: Optional[int] = None,
    tfs_z: float = 1.0,
    mirostat_mode: int = 0,
    mirostat_tau: float = 5.0,
    mirostat_eta: float = 0.1,
    model: Optional[str] = None,
    stopping_criteria: Optional[StoppingCriteriaList] = None,
    logits_processor: Optional[LogitsProcessorList] = None,
    grammar: Optional[LlamaGrammar] = None,
    logit_bias: Optional[Dict[int, float]] = None,
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
    """Generate text from a prompt.

    Args:
        prompt: The prompt to generate text from.
        suffix: A suffix to append to the generated text. If None, no suffix is appended.
        max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
        temperature: The temperature to use for sampling.
        top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
        min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
        typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
        logprobs: The number of logprobs to return. If None, no logprobs are returned.
        echo: Whether to echo the prompt.
        stop: A list of strings to stop generation when encountered.
        frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
        presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
        repeat_penalty: The penalty to apply to repeated tokens.
        top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
        stream: Whether to stream the results.
        seed: The seed to use for sampling.
        tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
        mirostat_mode: The mirostat sampling mode.
        mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
        mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
        model: The name to use for the model in the completion object.
        stopping_criteria: A list of stopping criteria to use.
        logits_processor: A list of logits processors to use.
        grammar: A grammar to use for constrained sampling.
        logit_bias: A logit bias to use.

    Raises:
        ValueError: If the requested tokens exceed the context window.
        RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.

    Returns:
        Response object containing the generated text.
    """
    completion_or_chunks = self._create_completion(
        prompt=prompt,
        suffix=suffix,
        max_tokens=-1 if max_tokens is None else max_tokens,
        temperature=temperature,
        top_p=top_p,
        min_p=min_p,
        typical_p=typical_p,
        logprobs=logprobs,
        echo=echo,
        stop=stop,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty,
        repeat_penalty=repeat_penalty,
        top_k=top_k,
        stream=stream,
        seed=seed,
        tfs_z=tfs_z,
        mirostat_mode=mirostat_mode,
        mirostat_tau=mirostat_tau,
        mirostat_eta=mirostat_eta,
        model=model,
        stopping_criteria=stopping_criteria,
        logits_processor=logits_processor,
        grammar=grammar,
        logit_bias=logit_bias,
    )
    if stream:
        chunks: Iterator[CreateCompletionStreamResponse] = completion_or_chunks
        return chunks
    completion: Completion = next(completion_or_chunks)  # type: ignore
    return completion

__call__(prompt, suffix=None, max_tokens=16, temperature=0.8, top_p=0.95, min_p=0.05, typical_p=1.0, logprobs=None, echo=False, stop=[], frequency_penalty=0.0, presence_penalty=0.0, repeat_penalty=1.0, top_k=40, stream=False, seed=None, tfs_z=1.0, mirostat_mode=0, mirostat_tau=5.0, mirostat_eta=0.1, model=None, stopping_criteria=None, logits_processor=None, grammar=None, logit_bias=None)

Generate text from a prompt.

Parameters:

  • prompt (str) –

    The prompt to generate text from.

  • suffix (Optional[str], default: None ) –

    A suffix to append to the generated text. If None, no suffix is appended.

  • max_tokens (Optional[int], default: 16 ) –

    The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.

  • temperature (float, default: 0.8 ) –

    The temperature to use for sampling.

  • top_p (float, default: 0.95 ) –

    The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751

  • min_p (float, default: 0.05 ) –

    The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841

  • typical_p (float, default: 1.0 ) –

    The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.

  • logprobs (Optional[int], default: None ) –

    The number of logprobs to return. If None, no logprobs are returned.

  • echo (bool, default: False ) –

    Whether to echo the prompt.

  • stop (Optional[Union[str, List[str]]], default: [] ) –

    A list of strings to stop generation when encountered.

  • frequency_penalty (float, default: 0.0 ) –

    The penalty to apply to tokens based on their frequency in the prompt.

  • presence_penalty (float, default: 0.0 ) –

    The penalty to apply to tokens based on their presence in the prompt.

  • repeat_penalty (float, default: 1.0 ) –

    The penalty to apply to repeated tokens.

  • top_k (int, default: 40 ) –

    The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751

  • stream (bool, default: False ) –

    Whether to stream the results.

  • seed (Optional[int], default: None ) –

    The seed to use for sampling.

  • tfs_z (float, default: 1.0 ) –

    The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.

  • mirostat_mode (int, default: 0 ) –

    The mirostat sampling mode.

  • mirostat_tau (float, default: 5.0 ) –

    The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.

  • mirostat_eta (float, default: 0.1 ) –

    The learning rate used to update mu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu to be updated more quickly, while a smaller learning rate will result in slower updates.

  • model (Optional[str], default: None ) –

    The name to use for the model in the completion object.

  • stopping_criteria (Optional[StoppingCriteriaList], default: None ) –

    A list of stopping criteria to use.

  • logits_processor (Optional[LogitsProcessorList], default: None ) –

    A list of logits processors to use.

  • grammar (Optional[LlamaGrammar], default: None ) –

    A grammar to use for constrained sampling.

  • logit_bias (Optional[Dict[int, float]], default: None ) –

    A logit bias to use.

Raises:

  • ValueError –

    If the requested tokens exceed the context window.

  • RuntimeError –

    If the prompt fails to tokenize or the model fails to evaluate the prompt.

Returns:

Source code in llama_cpp/llama.py
def __call__(
    self,
    prompt: str,
    suffix: Optional[str] = None,
    max_tokens: Optional[int] = 16,
    temperature: float = 0.8,
    top_p: float = 0.95,
    min_p: float = 0.05,
    typical_p: float = 1.0,
    logprobs: Optional[int] = None,
    echo: bool = False,
    stop: Optional[Union[str, List[str]]] = [],
    frequency_penalty: float = 0.0,
    presence_penalty: float = 0.0,
    repeat_penalty: float = 1.0,
    top_k: int = 40,
    stream: bool = False,
    seed: Optional[int] = None,
    tfs_z: float = 1.0,
    mirostat_mode: int = 0,
    mirostat_tau: float = 5.0,
    mirostat_eta: float = 0.1,
    model: Optional[str] = None,
    stopping_criteria: Optional[StoppingCriteriaList] = None,
    logits_processor: Optional[LogitsProcessorList] = None,
    grammar: Optional[LlamaGrammar] = None,
    logit_bias: Optional[Dict[int, float]] = None,
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
    """Generate text from a prompt.

    Args:
        prompt: The prompt to generate text from.
        suffix: A suffix to append to the generated text. If None, no suffix is appended.
        max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
        temperature: The temperature to use for sampling.
        top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
        min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
        typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
        logprobs: The number of logprobs to return. If None, no logprobs are returned.
        echo: Whether to echo the prompt.
        stop: A list of strings to stop generation when encountered.
        frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
        presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
        repeat_penalty: The penalty to apply to repeated tokens.
        top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
        stream: Whether to stream the results.
        seed: The seed to use for sampling.
        tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
        mirostat_mode: The mirostat sampling mode.
        mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
        mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
        model: The name to use for the model in the completion object.
        stopping_criteria: A list of stopping criteria to use.
        logits_processor: A list of logits processors to use.
        grammar: A grammar to use for constrained sampling.
        logit_bias: A logit bias to use.

    Raises:
        ValueError: If the requested tokens exceed the context window.
        RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.

    Returns:
        Response object containing the generated text.
    """
    return self.create_completion(
        prompt=prompt,
        suffix=suffix,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        min_p=min_p,
        typical_p=typical_p,
        logprobs=logprobs,
        echo=echo,
        stop=stop,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty,
        repeat_penalty=repeat_penalty,
        top_k=top_k,
        stream=stream,
        seed=seed,
        tfs_z=tfs_z,
        mirostat_mode=mirostat_mode,
        mirostat_tau=mirostat_tau,
        mirostat_eta=mirostat_eta,
        model=model,
        stopping_criteria=stopping_criteria,
        logits_processor=logits_processor,
        grammar=grammar,
        logit_bias=logit_bias,
    )

create_chat_completion(messages, functions=None, function_call=None, tools=None, tool_choice=None, temperature=0.2, top_p=0.95, top_k=40, min_p=0.05, typical_p=1.0, stream=False, stop=[], seed=None, response_format=None, max_tokens=None, presence_penalty=0.0, frequency_penalty=0.0, repeat_penalty=1.0, tfs_z=1.0, mirostat_mode=0, mirostat_tau=5.0, mirostat_eta=0.1, model=None, logits_processor=None, grammar=None, logit_bias=None, logprobs=None, top_logprobs=None)

Generate a chat completion from a list of messages.

Parameters:

  • messages (List[ChatCompletionRequestMessage]) –

    A list of messages to generate a response for.

  • functions (Optional[List[ChatCompletionFunction]], default: None ) –

    A list of functions to use for the chat completion.

  • function_call (Optional[ChatCompletionRequestFunctionCall], default: None ) –

    A function call to use for the chat completion.

  • tools (Optional[List[ChatCompletionTool]], default: None ) –

    A list of tools to use for the chat completion.

  • tool_choice (Optional[ChatCompletionToolChoiceOption], default: None ) –

    A tool choice to use for the chat completion.

  • temperature (float, default: 0.2 ) –

    The temperature to use for sampling.

  • top_p (float, default: 0.95 ) –

    The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751

  • top_k (int, default: 40 ) –

    The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751

  • min_p (float, default: 0.05 ) –

    The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841

  • typical_p (float, default: 1.0 ) –

    The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.

  • stream (bool, default: False ) –

    Whether to stream the results.

  • stop (Optional[Union[str, List[str]]], default: [] ) –

    A list of strings to stop generation when encountered.

  • seed (Optional[int], default: None ) –

    The seed to use for sampling.

  • response_format (Optional[ChatCompletionRequestResponseFormat], default: None ) –

    The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.

  • max_tokens (Optional[int], default: None ) –

    The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.

  • presence_penalty (float, default: 0.0 ) –

    The penalty to apply to tokens based on their presence in the prompt.

  • frequency_penalty (float, default: 0.0 ) –

    The penalty to apply to tokens based on their frequency in the prompt.

  • repeat_penalty (float, default: 1.0 ) –

    The penalty to apply to repeated tokens.

  • tfs_z (float, default: 1.0 ) –

    The tail-free sampling parameter.

  • mirostat_mode (int, default: 0 ) –

    The mirostat sampling mode.

  • mirostat_tau (float, default: 5.0 ) –

    The mirostat sampling tau parameter.

  • mirostat_eta (float, default: 0.1 ) –

    The mirostat sampling eta parameter.

  • model (Optional[str], default: None ) –

    The name to use for the model in the completion object.

  • logits_processor (Optional[LogitsProcessorList], default: None ) –

    A list of logits processors to use.

  • grammar (Optional[LlamaGrammar], default: None ) –

    A grammar to use.

  • logit_bias (Optional[Dict[int, float]], default: None ) –

    A logit bias to use.

Returns:

Source code in llama_cpp/llama.py
def create_chat_completion(
    self,
    messages: List[ChatCompletionRequestMessage],
    functions: Optional[List[ChatCompletionFunction]] = None,
    function_call: Optional[ChatCompletionRequestFunctionCall] = None,
    tools: Optional[List[ChatCompletionTool]] = None,
    tool_choice: Optional[ChatCompletionToolChoiceOption] = None,
    temperature: float = 0.2,
    top_p: float = 0.95,
    top_k: int = 40,
    min_p: float = 0.05,
    typical_p: float = 1.0,
    stream: bool = False,
    stop: Optional[Union[str, List[str]]] = [],
    seed: Optional[int] = None,
    response_format: Optional[ChatCompletionRequestResponseFormat] = None,
    max_tokens: Optional[int] = None,
    presence_penalty: float = 0.0,
    frequency_penalty: float = 0.0,
    repeat_penalty: float = 1.0,
    tfs_z: float = 1.0,
    mirostat_mode: int = 0,
    mirostat_tau: float = 5.0,
    mirostat_eta: float = 0.1,
    model: Optional[str] = None,
    logits_processor: Optional[LogitsProcessorList] = None,
    grammar: Optional[LlamaGrammar] = None,
    logit_bias: Optional[Dict[int, float]] = None,
    logprobs: Optional[bool] = None,
    top_logprobs: Optional[int] = None,
) -> Union[
    CreateChatCompletionResponse, Iterator[CreateChatCompletionStreamResponse]
]:
    """Generate a chat completion from a list of messages.

    Args:
        messages: A list of messages to generate a response for.
        functions: A list of functions to use for the chat completion.
        function_call: A function call to use for the chat completion.
        tools: A list of tools to use for the chat completion.
        tool_choice: A tool choice to use for the chat completion.
        temperature: The temperature to use for sampling.
        top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
        top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
        min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
        typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
        stream: Whether to stream the results.
        stop: A list of strings to stop generation when encountered.
        seed: The seed to use for sampling.
        response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.
        max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
        presence_penalty: The penalty to apply to tokens based on their presence in the prompt.
        frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.
        repeat_penalty: The penalty to apply to repeated tokens.
        tfs_z: The tail-free sampling parameter.
        mirostat_mode: The mirostat sampling mode.
        mirostat_tau: The mirostat sampling tau parameter.
        mirostat_eta: The mirostat sampling eta parameter.
        model: The name to use for the model in the completion object.
        logits_processor: A list of logits processors to use.
        grammar: A grammar to use.
        logit_bias: A logit bias to use.

    Returns:
        Generated chat completion or a stream of chat completion chunks.
    """
    handler = (
        self.chat_handler
        or self._chat_handlers.get(self.chat_format)
        or llama_chat_format.get_chat_completion_handler(self.chat_format)
    )
    return handler(
        llama=self,
        messages=messages,
        functions=functions,
        function_call=function_call,
        tools=tools,
        tool_choice=tool_choice,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        min_p=min_p,
        typical_p=typical_p,
        logprobs=logprobs,
        top_logprobs=top_logprobs,
        stream=stream,
        stop=stop,
        seed=seed,
        response_format=response_format,
        max_tokens=max_tokens,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        repeat_penalty=repeat_penalty,
        tfs_z=tfs_z,
        mirostat_mode=mirostat_mode,
        mirostat_tau=mirostat_tau,
        mirostat_eta=mirostat_eta,
        model=model,
        logits_processor=logits_processor,
        grammar=grammar,
        logit_bias=logit_bias,
    )

create_chat_completion_openai_v1(*args, **kwargs)

Generate a chat completion with return type based on the the OpenAI v1 API.

OpenAI python package is required to use this method.

You can install it with pip install openai.

Parameters:

  • *args (Any, default: () ) –

    Positional arguments to pass to create_chat_completion.

  • **kwargs (Any, default: {} ) –

    Keyword arguments to pass to create_chat_completion.

Returns:

  • –

    Generated chat completion or a stream of chat completion chunks.

Source code in llama_cpp/llama.py
def create_chat_completion_openai_v1(
    self,
    *args: Any,
    **kwargs: Any,
):
    """Generate a chat completion with return type based on the the OpenAI v1 API.

    OpenAI python package is required to use this method.

    You can install it with `pip install openai`.

    Args:
        *args: Positional arguments to pass to create_chat_completion.
        **kwargs: Keyword arguments to pass to create_chat_completion.

    Returns:
        Generated chat completion or a stream of chat completion chunks.
    """
    try:
        from openai.types.chat import ChatCompletion, ChatCompletionChunk

        stream = kwargs.get("stream", False)  # type: ignore
        assert isinstance(stream, bool)
        if stream:
            return (ChatCompletionChunk(**chunk) for chunk in self.create_chat_completion(*args, **kwargs))  # type: ignore
        else:
            return ChatCompletion(**self.create_chat_completion(*args, **kwargs))  # type: ignore
    except ImportError:
        raise ImportError(
            "To use create_chat_completion_openai_v1, you must install the openai package."
            "You can install it with `pip install openai`."
        )

set_cache(cache)

Set the cache.

Parameters:

  • cache (Optional[BaseLlamaCache]) –

    The cache to set.

Source code in llama_cpp/llama.py
def set_cache(self, cache: Optional[BaseLlamaCache]):
    """Set the cache.

    Args:
        cache: The cache to set.
    """
    self.cache = cache

save_state()

Source code in llama_cpp/llama.py
def save_state(self) -> LlamaState:
    if self.verbose:
        print("Llama.save_state: saving llama state", file=sys.stderr)
    state_size = llama_cpp.llama_get_state_size(self._ctx.ctx)
    if self.verbose:
        print(f"Llama.save_state: got state size: {state_size}", file=sys.stderr)
    llama_state = (ctypes.c_uint8 * int(state_size))()
    if self.verbose:
        print("Llama.save_state: allocated state", file=sys.stderr)
    n_bytes = llama_cpp.llama_copy_state_data(self._ctx.ctx, llama_state)
    if self.verbose:
        print(f"Llama.save_state: copied llama state: {n_bytes}", file=sys.stderr)
    if int(n_bytes) > int(state_size):
        raise RuntimeError("Failed to copy llama state data")
    llama_state_compact = (ctypes.c_uint8 * int(n_bytes))()
    llama_cpp.ctypes.memmove(llama_state_compact, llama_state, int(n_bytes))
    if self.verbose:
        print(
            f"Llama.save_state: saving {n_bytes} bytes of llama state",
            file=sys.stderr,
        )
    return LlamaState(
        scores=self._scores.copy(),
        input_ids=self.input_ids.copy(),
        n_tokens=self.n_tokens,
        llama_state=bytes(llama_state_compact),
        llama_state_size=n_bytes,
        seed=self._seed,
    )

load_state(state)

Source code in llama_cpp/llama.py
def load_state(self, state: LlamaState) -> None:
    # Only filling in up to `n_tokens` and then zero-ing out the rest
    self.scores[: state.n_tokens, :] = state.scores.copy()
    rest = self.scores[state.n_tokens :, :]
    rest[rest > 0] = 0.0
    self.input_ids = state.input_ids.copy()
    self.n_tokens = state.n_tokens
    self._seed = state.seed
    state_size = state.llama_state_size
    LLamaStateArrayType = ctypes.c_uint8 * state_size
    llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state)

    if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size:
        raise RuntimeError("Failed to set llama state data")

token_bos()

Return the beginning-of-sequence token.

Source code in llama_cpp/llama.py
def token_bos(self) -> int:
    """Return the beginning-of-sequence token."""
    return self._model.token_bos()

token_eos()

Return the end-of-sequence token.

Source code in llama_cpp/llama.py
def token_eos(self) -> int:
    """Return the end-of-sequence token."""
    return self._model.token_eos()

from_pretrained(repo_id, filename, additional_files=None, local_dir=None, local_dir_use_symlinks='auto', cache_dir=None, **kwargs) classmethod

Create a Llama model from a pretrained model name or path. This method requires the huggingface-hub package. You can install it with pip install huggingface-hub.

Parameters:

  • repo_id (str) –

    The model repo id.

  • filename (Optional[str]) –

    A filename or glob pattern to match the model file in the repo.

  • additional_files (Optional[List], default: None ) –

    A list of filenames or glob patterns to match additional model files in the repo.

  • local_dir (Optional[Union[str, PathLike[str]]], default: None ) –

    The local directory to save the model to.

  • local_dir_use_symlinks (Union[bool, Literal['auto']], default: 'auto' ) –

    Whether to use symlinks when downloading the model.

  • **kwargs (Any, default: {} ) –

    Additional keyword arguments to pass to the Llama constructor.

Returns:

  • 'Llama' –

    A Llama model.

Source code in llama_cpp/llama.py
@classmethod
def from_pretrained(
    cls,
    repo_id: str,
    filename: Optional[str],
    additional_files: Optional[List] = None,
    local_dir: Optional[Union[str, os.PathLike[str]]] = None,
    local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
    cache_dir: Optional[Union[str, os.PathLike[str]]] = None,
    **kwargs: Any,
) -> "Llama":
    """Create a Llama model from a pretrained model name or path.
    This method requires the huggingface-hub package.
    You can install it with `pip install huggingface-hub`.

    Args:
        repo_id: The model repo id.
        filename: A filename or glob pattern to match the model file in the repo.
        additional_files: A list of filenames or glob patterns to match additional model files in the repo.
        local_dir: The local directory to save the model to.
        local_dir_use_symlinks: Whether to use symlinks when downloading the model.
        **kwargs: Additional keyword arguments to pass to the Llama constructor.

    Returns:
        A Llama model."""
    try:
        from huggingface_hub import hf_hub_download, HfFileSystem
        from huggingface_hub.utils import validate_repo_id
    except ImportError:
        raise ImportError(
            "Llama.from_pretrained requires the huggingface-hub package. "
            "You can install it with `pip install huggingface-hub`."
        )

    validate_repo_id(repo_id)

    hffs = HfFileSystem()

    files = [
        file["name"] if isinstance(file, dict) else file
        for file in hffs.ls(repo_id, recursive=True)
    ]

    # split each file into repo_id, subfolder, filename
    file_list: List[str] = []
    for file in files:
        rel_path = Path(file).relative_to(repo_id)
        file_list.append(str(rel_path))

    # find the only/first shard file:
    matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)]  # type: ignore

    if len(matching_files) == 0:
        raise ValueError(
            f"No file found in {repo_id} that match {filename}\n\n"
            f"Available Files:\n{json.dumps(file_list)}"
        )

    if len(matching_files) > 1:
        raise ValueError(
            f"Multiple files found in {repo_id} matching {filename}\n\n"
            f"Available Files:\n{json.dumps(files)}"
        )

    (matching_file,) = matching_files

    subfolder = str(Path(matching_file).parent)
    filename = Path(matching_file).name

    # download the file
    hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
        local_dir=local_dir,
        local_dir_use_symlinks=local_dir_use_symlinks,
        cache_dir=cache_dir,
    )

    if additional_files:
        for additonal_file_name in additional_files:
            # find the additional shard file:
            matching_additional_files = [file for file in file_list if fnmatch.fnmatch(file, additonal_file_name)]

            if len(matching_additional_files) == 0:
                raise ValueError(
                    f"No file found in {repo_id} that match {additonal_file_name}\n\n"
                    f"Available Files:\n{json.dumps(file_list)}"
                )

            if len(matching_additional_files) > 1:
                raise ValueError(
                    f"Multiple files found in {repo_id} matching {additonal_file_name}\n\n"
                    f"Available Files:\n{json.dumps(files)}"
                )

            (matching_additional_file,) = matching_additional_files

            # download the additional file
            hf_hub_download(
                repo_id=repo_id,
                filename=matching_additional_file,
                subfolder=subfolder,
                local_dir=local_dir,
                local_dir_use_symlinks=local_dir_use_symlinks,
                cache_dir=cache_dir,
            )

    if local_dir is None:
        model_path = hf_hub_download(
            repo_id=repo_id,
            filename=filename,
            subfolder=subfolder,
            local_dir=local_dir,
            local_dir_use_symlinks=local_dir_use_symlinks,
            cache_dir=cache_dir,
            local_files_only=True,
        )
    else:
        model_path = os.path.join(local_dir, filename)

    # loading the first file of a sharded GGUF loads all remaining shard files in the subfolder
    return cls(
        model_path=model_path,
        **kwargs,
    )

llama_cpp.LlamaGrammar

Source code in llama_cpp/llama_grammar.py
class LlamaGrammar:
    def __init__(self, *args, _grammar: str, **kwargs):
        self._grammar = _grammar
        self._root = LLAMA_GRAMMAR_DEFAULT_ROOT

    @classmethod
    def from_string(cls, grammar: str, verbose: bool = True) -> "LlamaGrammar":
        return cls(_grammar=grammar)

    @classmethod
    def from_file(cls, file: Union[str, Path], verbose: bool = True) -> "LlamaGrammar":
        try:
            with open(file) as f:
                grammar = f.read()
        except Exception as err:
            raise Exception(
                f"{cls.from_file.__name__}: error reading grammar file: {err}"
            )

        if grammar:
            return cls.from_string(grammar, verbose=verbose)

        raise ValueError(
            f"{cls.from_file.__name__}: error parsing grammar file: params_grammer is empty"
        )

    @classmethod
    def from_json_schema(cls, json_schema: str, verbose: bool = True) -> "LlamaGrammar":
        return cls.from_string(json_schema_to_gbnf(json_schema), verbose=verbose)

from_string(grammar, verbose=True) classmethod

Source code in llama_cpp/llama_grammar.py
@classmethod
def from_string(cls, grammar: str, verbose: bool = True) -> "LlamaGrammar":
    return cls(_grammar=grammar)

from_json_schema(json_schema, verbose=True) classmethod

Source code in llama_cpp/llama_grammar.py
@classmethod
def from_json_schema(cls, json_schema: str, verbose: bool = True) -> "LlamaGrammar":
    return cls.from_string(json_schema_to_gbnf(json_schema), verbose=verbose)

llama_cpp.LlamaCache = LlamaRAMCache module-attribute

llama_cpp.LlamaState

Source code in llama_cpp/llama.py
class LlamaState:
    def __init__(
        self,
        input_ids: npt.NDArray[np.intc],
        scores: npt.NDArray[np.single],
        n_tokens: int,
        llama_state: bytes,
        llama_state_size: int,
        seed: int,
    ):
        self.input_ids = input_ids
        self.scores = scores
        self.n_tokens = n_tokens
        self.llama_state = llama_state
        self.llama_state_size = llama_state_size
        self.seed = seed

llama_cpp.LogitsProcessor = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]] module-attribute

llama_cpp.LogitsProcessorList

Bases: List[LogitsProcessor]

Source code in llama_cpp/llama.py
class LogitsProcessorList(List[LogitsProcessor]):
    def __call__(
        self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
    ) -> npt.NDArray[np.single]:
        for processor in self:
            scores = processor(input_ids, scores)
        return scores

llama_cpp.StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool] module-attribute

llama_cpp.StoppingCriteriaList

Bases: List[StoppingCriteria]

Source code in llama_cpp/llama.py
class StoppingCriteriaList(List[StoppingCriteria]):
    def __call__(
        self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
    ) -> bool:
        return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])

Low Level API

Low-level Python bindings for llama.cpp using Python's ctypes library.

llama_cpp.llama_cpp

llama_vocab_p = NewType('llama_vocab_p', int) module-attribute

llama_vocab_p_ctypes = ctypes.c_void_p module-attribute

llama_model_p = NewType('llama_model_p', int) module-attribute

llama_model_p_ctypes = ctypes.c_void_p module-attribute

llama_context_p = NewType('llama_context_p', int) module-attribute

llama_context_p_ctypes = ctypes.c_void_p module-attribute

llama_kv_cache_p = NewType('llama_kv_cache_p', int) module-attribute

llama_kv_cache_p_ctypes = ctypes.c_void_p module-attribute

llama_pos = ctypes.c_int32 module-attribute

llama_token = ctypes.c_int32 module-attribute

llama_token_p = ctypes.POINTER(llama_token) module-attribute

llama_seq_id = ctypes.c_int32 module-attribute

llama_token_data

Bases: Structure

Used to store token data

Attributes:

  • id (llama_token) –

    token id

  • logit (float) –

    log-odds of the token

  • p (float) –

    probability of the token

Source code in llama_cpp/llama_cpp.py
class llama_token_data(ctypes.Structure):
    """Used to store token data

    Attributes:
        id (llama_token): token id
        logit (float): log-odds of the token
        p (float): probability of the token"""

    if TYPE_CHECKING:
        id: llama_token
        logit: float
        p: float

    _fields_ = [
        ("id", llama_token),
        ("logit", ctypes.c_float),
        ("p", ctypes.c_float),
    ]

llama_token_data_p = ctypes.POINTER(llama_token_data) module-attribute

llama_token_data_array

Bases: Structure

Used to sample tokens given logits

Attributes:

  • data (Array[llama_token_data]) –

    token data

  • size (int) –

    size of the array

  • selected (int) –

    index in the data array (i.e. not the token id)

  • sorted (bool) –

    whether the array is sorted

Source code in llama_cpp/llama_cpp.py
class llama_token_data_array(ctypes.Structure):
    """Used to sample tokens given logits

    Attributes:
        data (ctypes.Array[llama_token_data]): token data
        size (int): size of the array
        selected (int): index in the data array (i.e. not the token id)
        sorted (bool): whether the array is sorted"""

    if TYPE_CHECKING:
        data: CtypesArray[llama_token_data]
        size: int
        selected: int
        sorted: bool

    _fields_ = [
        ("data", llama_token_data_p),
        ("size", ctypes.c_size_t),
        ("selected", ctypes.c_int64),
        ("sorted", ctypes.c_bool),
    ]

llama_token_data_array_p = ctypes.POINTER(llama_token_data_array) module-attribute

llama_progress_callback = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_float, ctypes.c_void_p) module-attribute

llama_batch

Bases: Structure

Input data for llama_decode

A llama_batch object can contain input about one or many sequences

The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens

Attributes:

  • n_tokens (int) –

    number of tokens

  • token (Array[llama_token]) –

    the token ids of the input (used when embd is NULL)

  • embd (Array[c_float]) –

    token embeddings (i.e. float vector of size n_embd) (used when token is NULL)

  • pos (Array[Array[llama_pos]]) –

    the positions of the respective token in the sequence

  • seq_id (Array[Array[llama_seq_id]]) –

    the sequence to which the respective token belongs

  • logits (Array[c_int8]) –

    if zero, the logits for the respective token will not be output

Source code in llama_cpp/llama_cpp.py
class llama_batch(ctypes.Structure):
    """Input data for llama_decode

    A llama_batch object can contain input about one or many sequences

    The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens

    Attributes:
        n_tokens (int): number of tokens
        token (ctypes.Array[llama_token]): the token ids of the input (used when embd is NULL)
        embd (ctypes.Array[ctypes.ctypes.c_float]): token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
        pos (ctypes.Array[ctypes.Array[llama_pos]]): the positions of the respective token in the sequence
        seq_id (ctypes.Array[ctypes.Array[llama_seq_id]]): the sequence to which the respective token belongs
        logits (ctypes.Array[ctypes.ctypes.c_int8]): if zero, the logits for the respective token will not be output
    """

    if TYPE_CHECKING:
        n_tokens: int
        token: CtypesArray[llama_token]
        embd: CtypesArray[ctypes.c_float]
        pos: CtypesArray[CtypesArray[llama_pos]]
        n_seq_id: CtypesArray[ctypes.c_int]
        seq_id: CtypesArray[CtypesArray[llama_seq_id]]
        logits: CtypesArray[ctypes.c_int8]

    _fields_ = [
        ("n_tokens", ctypes.c_int32),
        ("token", ctypes.POINTER(llama_token)),
        ("embd", ctypes.POINTER(ctypes.c_float)),
        ("pos", ctypes.POINTER(llama_pos)),
        ("n_seq_id", ctypes.POINTER(ctypes.c_int32)),
        ("seq_id", ctypes.POINTER(ctypes.POINTER(llama_seq_id))),
        ("logits", ctypes.POINTER(ctypes.c_int8)),
    ]

llama_model_kv_override_value

Bases: Union

Source code in llama_cpp/llama_cpp.py
class llama_model_kv_override_value(ctypes.Union):
    _fields_ = [
        ("val_i64", ctypes.c_int64),
        ("val_f64", ctypes.c_double),
        ("val_bool", ctypes.c_bool),
        ("val_str", ctypes.c_char * 128),
    ]

    if TYPE_CHECKING:
        val_i64: int
        val_f64: float
        val_bool: bool
        val_str: bytes

llama_model_kv_override

Bases: Structure

Source code in llama_cpp/llama_cpp.py
class llama_model_kv_override(ctypes.Structure):
    _fields_ = [
        ("tag", ctypes.c_int),
        ("key", ctypes.c_char * 128),
        ("value", llama_model_kv_override_value),
    ]

    if TYPE_CHECKING:
        tag: int
        key: bytes
        value: Union[int, float, bool, bytes]

llama_model_params

Bases: Structure

Parameters for llama_model

Attributes:

  • devices (Array[ggml_backend_dev_t]) –

    NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)

  • tensor_buft_overrides (Array[llama_model_tensor_buft_override]) –

    NULL-terminated list of buffer types to use for tensors that match a pattern

  • n_gpu_layers (int) –

    number of layers to store in VRAM

  • split_mode (int) –

    how to split the model across multiple GPUs

  • main_gpu (int) –

    the GPU that is used for the entire model. main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results LLAMA_SPLIT_LAYER: ignored

  • tensor_split (Array[c_float]) –

    proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()

  • progress_callback (llama_progress_callback) –

    called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.

  • progress_callback_user_data (c_void_p) –

    context pointer passed to the progress callback

  • kv_overrides (Array[llama_model_kv_override]) –

    override key-value pairs of the model meta data

  • vocab_only (bool) –

    only load the vocabulary, no weights

  • use_mmap (bool) –

    use mmap if possible

  • use_mlock (bool) –

    force system to keep model in RAM

  • check_tensors (bool) –

    validate model tensor data

Source code in llama_cpp/llama_cpp.py
class llama_model_params(ctypes.Structure):
    """Parameters for llama_model

    Attributes:
        devices (ctypes.Array[ggml_backend_dev_t]): NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
        tensor_buft_overrides (ctypes.Array[llama_model_tensor_buft_override]): NULL-terminated list of buffer types to use for tensors that match a pattern
        n_gpu_layers (int): number of layers to store in VRAM
        split_mode (int): how to split the model across multiple GPUs
        main_gpu (int): the GPU that is used for the entire model. main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results LLAMA_SPLIT_LAYER: ignored
        tensor_split (ctypes.Array[ctypes.ctypes.c_float]): proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
        progress_callback (llama_progress_callback): called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.
        progress_callback_user_data (ctypes.ctypes.c_void_p): context pointer passed to the progress callback
        kv_overrides (ctypes.Array[llama_model_kv_override]): override key-value pairs of the model meta data
        vocab_only (bool): only load the vocabulary, no weights
        use_mmap (bool): use mmap if possible
        use_mlock (bool): force system to keep model in RAM
        check_tensors (bool): validate model tensor data"""

    if TYPE_CHECKING:
        devices: CtypesArray[ctypes.c_void_p]  # NOTE: unused
        tensor_buft_overrides: CtypesArray[llama_model_tensor_buft_override] # NOTE: unused
        n_gpu_layers: int
        split_mode: int
        main_gpu: int
        tensor_split: CtypesArray[ctypes.c_float]
        progress_callback: Callable[[float, ctypes.c_void_p], bool]
        progress_callback_user_data: ctypes.c_void_p
        kv_overrides: CtypesArray[llama_model_kv_override]
        vocab_only: bool
        use_mmap: bool
        use_mlock: bool
        check_tensors: bool

    _fields_ = [
        ("devices", ctypes.c_void_p), # NOTE: unnused
        ("tensor_buft_overrides", ctypes.c_void_p), # NOTE: unused
        ("n_gpu_layers", ctypes.c_int32),
        ("split_mode", ctypes.c_int),
        ("main_gpu", ctypes.c_int32),
        ("tensor_split", ctypes.POINTER(ctypes.c_float)),
        ("progress_callback", llama_progress_callback),
        ("progress_callback_user_data", ctypes.c_void_p),
        ("kv_overrides", ctypes.POINTER(llama_model_kv_override)),
        ("vocab_only", ctypes.c_bool),
        ("use_mmap", ctypes.c_bool),
        ("use_mlock", ctypes.c_bool),
        ("check_tensors", ctypes.c_bool),
    ]

llama_context_params

Bases: Structure

Parameters for llama_context

Attributes:

  • n_ctx (int) –

    text context, 0 = from model

  • n_batch (int) –

    logical maximum batch size that can be submitted to llama_decode

  • n_ubatch (int) –

    physical maximum batch size

  • n_seq_max (int) –

    max number of sequences (i.e. distinct states for recurrent models)

  • n_threads (int) –

    number of threads to use for generation

  • n_threads_batch (int) –

    number of threads to use for batch processing

  • rope_scaling_type (int) –

    RoPE scaling type, from enum llama_rope_scaling_type

  • pooling_type (int) –

    whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)

  • attention_type (int) –

    attention type to use for embeddings

  • rope_freq_base (float) –

    RoPE base frequency, 0 = from model

  • rope_freq_scale (float) –

    RoPE frequency scaling factor, 0 = from model

  • yarn_ext_factor (float) –

    YaRN extrapolation mix factor, negative = from model

  • yarn_attn_factor (float) –

    YaRN magnitude scaling factor

  • yarn_beta_fast (float) –

    YaRN low correction dim

  • yarn_beta_slow (float) –

    YaRN high correction dim

  • yarn_orig_ctx (int) –

    YaRN original context size

  • defrag_thold (float) –

    defragment the KV cache if holes/size > thold, < 0 disabled (default)

  • cb_eval (ggml_backend_sched_eval_callback) –

    callback for scheduling eval

  • cb_eval_user_data (c_void_p) –

    user data for cb_eval

  • type_k (int) –

    data type for K cache

  • type_v (int) –

    data type for V cache

  • logits_all (bool) –

    the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)

  • embeddings (bool) –

    if true, extract embeddings (together with logits)

  • offload_kqv (bool) –

    whether to offload the KQV ops (including the KV cache) to GPU

  • flash_attn (bool) –

    whether to use flash attention

  • no_perf (bool) –

    whether to measure performance timings

  • abort_callback (ggml_abort_callback) –

    abort callback if it returns true, execution of llama_decode() will be aborted

  • abort_callback_data (c_void_p) –

    data for abort_callback

Source code in llama_cpp/llama_cpp.py
class llama_context_params(ctypes.Structure):
    """Parameters for llama_context

    Attributes:
        n_ctx (int): text context, 0 = from model
        n_batch (int): logical maximum batch size that can be submitted to llama_decode
        n_ubatch (int): physical maximum batch size
        n_seq_max (int): max number of sequences (i.e. distinct states for recurrent models)
        n_threads (int): number of threads to use for generation
        n_threads_batch (int): number of threads to use for batch processing
        rope_scaling_type (int): RoPE scaling type, from `enum llama_rope_scaling_type`
        pooling_type (int): whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
        attention_type (int): attention type to use for embeddings
        rope_freq_base (float): RoPE base frequency, 0 = from model
        rope_freq_scale (float): RoPE frequency scaling factor, 0 = from model
        yarn_ext_factor (float): YaRN extrapolation mix factor, negative = from model
        yarn_attn_factor (float): YaRN magnitude scaling factor
        yarn_beta_fast (float): YaRN low correction dim
        yarn_beta_slow (float): YaRN high correction dim
        yarn_orig_ctx (int): YaRN original context size
        defrag_thold (float): defragment the KV cache if holes/size > thold, < 0 disabled (default)
        cb_eval (ggml_backend_sched_eval_callback): callback for scheduling eval
        cb_eval_user_data (ctypes.ctypes.c_void_p): user data for cb_eval
        type_k (int): data type for K cache
        type_v (int): data type for V cache
        logits_all (bool): the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
        embeddings (bool): if true, extract embeddings (together with logits)
        offload_kqv (bool): whether to offload the KQV ops (including the KV cache) to GPU
        flash_attn (bool): whether to use flash attention
        no_perf (bool): whether to measure performance timings
        abort_callback (ggml_abort_callback): abort callback if it returns true, execution of llama_decode() will be aborted
        abort_callback_data (ctypes.ctypes.c_void_p): data for abort_callback
    """

    if TYPE_CHECKING:
        n_ctx: int
        n_batch: int
        n_ubatch: int
        n_seq_max: int
        n_threads: int
        n_threads_batch: int
        rope_scaling_type: int
        pooling_type: int
        attention_type: int
        rope_freq_base: float
        rope_freq_scale: float
        yarn_ext_factor: float
        yarn_attn_factor: float
        yarn_beta_fast: float
        yarn_beta_slow: float
        yarn_orig_ctx: int
        defrag_thold: float
        cb_eval: Callable[[ctypes.c_void_p, bool], bool]
        cb_eval_user_data: ctypes.c_void_p
        type_k: int
        type_v: int
        logits_all: bool
        embeddings: bool
        offload_kqv: bool
        flash_attn: bool
        no_perf: bool
        abort_callback: Callable[[ctypes.c_void_p], bool]
        abort_callback_data: ctypes.c_void_p

    _fields_ = [
        ("n_ctx", ctypes.c_uint32),
        ("n_batch", ctypes.c_uint32),
        ("n_ubatch", ctypes.c_uint32),
        ("n_seq_max", ctypes.c_uint32),
        ("n_threads", ctypes.c_int32),
        ("n_threads_batch", ctypes.c_int32),
        ("rope_scaling_type", ctypes.c_int),
        ("pooling_type", ctypes.c_int),
        ("attention_type", ctypes.c_int),
        ("rope_freq_base", ctypes.c_float),
        ("rope_freq_scale", ctypes.c_float),
        ("yarn_ext_factor", ctypes.c_float),
        ("yarn_attn_factor", ctypes.c_float),
        ("yarn_beta_fast", ctypes.c_float),
        ("yarn_beta_slow", ctypes.c_float),
        ("yarn_orig_ctx", ctypes.c_uint32),
        ("defrag_thold", ctypes.c_float),
        ("cb_eval", ggml_backend_sched_eval_callback),
        ("cb_eval_user_data", ctypes.c_void_p),
        ("type_k", ctypes.c_int),
        ("type_v", ctypes.c_int),
        ("logits_all", ctypes.c_bool),
        ("embeddings", ctypes.c_bool),
        ("offload_kqv", ctypes.c_bool),
        ("flash_attn", ctypes.c_bool),
        ("no_perf", ctypes.c_bool),
        ("abort_callback", ggml_abort_callback),
        ("abort_callback_data", ctypes.c_void_p),
    ]

llama_log_callback = ctypes.CFUNCTYPE(None, ctypes.c_int, ctypes.c_char_p, ctypes.c_void_p) module-attribute

Signature for logging events Note that text includes the new line character at the end for most events. If your logging mechanism cannot handle that, check if the last character is ' ' and strip it if it exists. It might not exist for progress report where '.' is output repeatedly.

llama_model_quantize_params

Bases: Structure

Parameters for llama_model_quantize

Attributes:

  • nthread (int) –

    number of threads to use for quantizing, if <=0 will use std:🧵:hardware_concurrency()

  • ftype (int) –

    quantize to this llama_ftype

  • output_tensor_type (int) –

    output tensor type

  • token_embedding_type (int) –

    token embeddings tensor type

  • allow_requantize (bool) –

    allow quantizing non-f32/f16 tensors

  • quantize_output_tensor (bool) –

    quantize output.weight

  • only_copy (bool) –

    only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored

  • pure (bool) –

    quantize all tensors to the default type

  • keep_split (bool) –

    quantize to the same number of shards

  • imatrix (c_void_p) –

    pointer to importance matrix data

  • kv_overrides (c_void_p) –

    pointer to vector containing overrides

  • tensor_types (c_void_p) –

    pointer to vector containing tensor types

Source code in llama_cpp/llama_cpp.py
class llama_model_quantize_params(ctypes.Structure):
    """Parameters for llama_model_quantize

    Attributes:
        nthread (int): number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
        ftype (int): quantize to this llama_ftype
        output_tensor_type (int): output tensor type
        token_embedding_type (int): token embeddings tensor type
        allow_requantize (bool): allow quantizing non-f32/f16 tensors
        quantize_output_tensor (bool): quantize output.weight
        only_copy (bool): only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
        pure (bool): quantize all tensors to the default type
        keep_split (bool): quantize to the same number of shards
        imatrix (ctypes.c_void_p): pointer to importance matrix data
        kv_overrides (ctypes.c_void_p): pointer to vector containing overrides
        tensor_types (ctypes.c_void_p): pointer to vector containing tensor types
    """

    if TYPE_CHECKING:
        nthread: int
        ftype: int
        output_tensor_type: int
        token_embedding_type: int
        allow_requantize: bool
        quantize_output_tensor: bool
        only_copy: bool
        pure: bool
        keep_split: bool
        imatrix: ctypes.c_void_p
        kv_overrides: ctypes.c_void_p
        tensor_types: ctypes.c_void_p

    _fields_ = [
        ("nthread", ctypes.c_int32),
        ("ftype", ctypes.c_int),
        ("output_tensor_type", ctypes.c_int),
        ("token_embedding_type", ctypes.c_int),
        ("allow_requantize", ctypes.c_bool),
        ("quantize_output_tensor", ctypes.c_bool),
        ("only_copy", ctypes.c_bool),
        ("pure", ctypes.c_bool),
        ("keep_split", ctypes.c_bool),
        ("imatrix", ctypes.c_void_p),
        ("kv_overrides", ctypes.c_void_p),
        ("tensor_types", ctypes.c_void_p),
    ]

llama_logit_bias

Bases: Structure

Used to store logit bias

Attributes:

Source code in llama_cpp/llama_cpp.py
class llama_logit_bias(ctypes.Structure):
    """Used to store logit bias

    Attributes:
        token (llama_token): token id
        bias (float): bias"""

    if TYPE_CHECKING:
        token: llama_token
        bias: float

    _fields_ = [
        ("token", llama_token),
        ("bias", ctypes.c_float),
    ]

llama_logit_bias_p = ctypes.POINTER(llama_logit_bias) module-attribute

llama_sampler_chain_params

Bases: Structure

Parameters for llama_sampler_chain

Attributes:

  • no_perf (bool) –

    whether to measure performance timings

Source code in llama_cpp/llama_cpp.py
class llama_sampler_chain_params(ctypes.Structure):
    """Parameters for llama_sampler_chain

    Attributes:
        no_perf (bool): whether to measure performance timings"""

    if TYPE_CHECKING:
        no_perf: bool

    _fields_ = [
        ("no_perf", ctypes.c_bool),
    ]

llama_chat_message

Bases: Structure

Source code in llama_cpp/llama_cpp.py
class llama_chat_message(ctypes.Structure):
    _fields_ = [
        ("role", ctypes.c_char_p),
        ("content", ctypes.c_char_p),
    ]

llama_adapter_lora_p = ctypes.c_void_p module-attribute

llama_adapter_lora_p_ctypes = ctypes.POINTER(ctypes.c_void_p) module-attribute

llama_model_default_params()

Get default parameters for llama_model

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_default_params",
    [],
    llama_model_params,
)
def llama_model_default_params() -> llama_model_params:
    """Get default parameters for llama_model"""
    ...

llama_context_default_params()

Get default parameters for llama_context

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_context_default_params",
    [],
    llama_context_params,
)
def llama_context_default_params() -> llama_context_params:
    """Get default parameters for llama_context"""
    ...

llama_sampler_chain_default_params()

Get default parameters for llama_sampler_chain

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_chain_default_params",
    [],
    llama_sampler_chain_params,
)
def llama_sampler_chain_default_params() -> llama_sampler_chain_params:
    """Get default parameters for llama_sampler_chain"""
    ...

llama_model_quantize_default_params()

Get default parameters for llama_model_quantize

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_quantize_default_params",
    [],
    llama_model_quantize_params,
)
def llama_model_quantize_default_params() -> llama_model_quantize_params:
    """Get default parameters for llama_model_quantize"""
    ...

llama_backend_init()

Initialize the llama + ggml backend If numa is true, use NUMA optimizations Call once at the start of the program

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_backend_init",
    [],
    None,
)
def llama_backend_init():
    """Initialize the llama + ggml backend
    If numa is true, use NUMA optimizations
    Call once at the start of the program"""
    ...

llama_backend_free()

Call once at the end of the program - currently only used for MPI

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_backend_free",
    [],
    None,
)
def llama_backend_free():
    """Call once at the end of the program - currently only used for MPI"""
    ...

llama_numa_init(numa)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_numa_init",
    [ctypes.c_int],
    None,
)
def llama_numa_init(numa: int, /):
    ...

llama_load_model_from_file(path_model, params)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_load_model_from_file",
    [ctypes.c_char_p, llama_model_params],
    llama_model_p_ctypes,
)
def llama_load_model_from_file(
    path_model: bytes, params: llama_model_params, /
) -> Optional[llama_model_p]:
    ...

llama_model_load_from_file(path_model, params)

Load the model from a file

If the file is split into multiple parts, the file name must follow this pattern: -%05d-of-%05d.gguf

If the split file name does not follow this pattern, use llama_model_load_from_splits

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_load_from_file",
    [ctypes.c_char_p, llama_model_params],
    llama_model_p_ctypes,
)
def llama_model_load_from_file(
    path_model: bytes, params: llama_model_params, /
) -> Optional[llama_model_p]:
    """Load the model from a file

    If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf

    If the split file name does not follow this pattern, use llama_model_load_from_splits"""
    ...

llama_model_load_from_splits(paths, n_paths, params)

Load the model from multiple splits (support custom naming scheme)

The paths must be in the correct order

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_load_from_splits",
    [ctypes.POINTER(ctypes.c_char_p), ctypes.c_size_t, llama_model_params],
    llama_model_p_ctypes,
)
def llama_model_load_from_splits(
    paths: List[bytes], n_paths: int, params: llama_model_params, /
) -> Optional[llama_model_p]:
    """Load the model from multiple splits (support custom naming scheme)

    The paths must be in the correct order"""
    ...

llama_free_model(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_free_model",
    [llama_model_p_ctypes],
    None,
)
def llama_free_model(model: llama_model_p, /):
    ...

llama_model_free(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_free",
    [llama_model_p_ctypes],
    None,
)
def llama_model_free(model: llama_model_p, /):
    ...

llama_init_from_model(model, params)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_init_from_model",
    [llama_model_p_ctypes, llama_context_params],
    llama_context_p_ctypes,
)
def llama_init_from_model(
    model: llama_model_p, params: llama_context_params, /
) -> Optional[llama_context_p]:
    ...

llama_new_context_with_model(model, params)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_new_context_with_model",
    [llama_model_p_ctypes, llama_context_params],
    llama_context_p_ctypes,
)
def llama_new_context_with_model(
    model: llama_model_p, params: llama_context_params, /
) -> Optional[llama_context_p]:
    ...

llama_free(ctx)

Frees all allocated memory

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_free",
    [llama_context_p_ctypes],
    None,
)
def llama_free(ctx: llama_context_p, /):
    """Frees all allocated memory"""
    ...

llama_time_us()

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_time_us",
    [],
    ctypes.c_int64,
)
def llama_time_us() -> int:
    ...

llama_max_devices()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_max_devices", [], ctypes.c_size_t)
def llama_max_devices() -> int:
    ...

llama_supports_mmap()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_supports_mmap", [], ctypes.c_bool)
def llama_supports_mmap() -> bool:
    ...

llama_supports_mlock()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_supports_mlock", [], ctypes.c_bool)
def llama_supports_mlock() -> bool:
    ...

llama_supports_gpu_offload()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_supports_gpu_offload", [], ctypes.c_bool)
def llama_supports_gpu_offload() -> bool:
    ...

llama_supports_rpc()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_supports_rpc", [], ctypes.c_bool)
def llama_supports_rpc() -> bool:
    ...

llama_n_ctx(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_ctx", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_ctx(ctx: llama_context_p, /) -> int:
    ...

llama_n_batch(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_batch", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_batch(ctx: llama_context_p, /) -> int:
    ...

llama_n_ubatch(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_ubatch", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_ubatch(ctx: llama_context_p, /) -> int:
    ...

llama_n_seq_max(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_seq_max", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_seq_max(ctx: llama_context_p, /) -> int:
    ...

llama_n_ctx_train(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_ctx_train", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_ctx_train(model: llama_model_p, /) -> int:
    ...

llama_n_embd(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_embd", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_embd(model: llama_model_p, /) -> int:
    ...

llama_n_layer(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_layer", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_layer(model: llama_model_p, /) -> int:
    ...

llama_n_head(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_head", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_head(model: llama_model_p, /) -> int:
    ...

llama_n_vocab(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_vocab", [llama_vocab_p_ctypes], ctypes.c_int32)
def llama_n_vocab(model: llama_vocab_p, /) -> int:
    ...

llama_get_model(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_get_model", [llama_context_p_ctypes], llama_model_p_ctypes)
def llama_get_model(ctx: llama_context_p, /) -> Optional[llama_model_p]:
    ...

llama_get_kv_self(ctx)

Get the KV cache for self-attention

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_kv_self",
    [llama_context_p_ctypes],
    llama_kv_cache_p_ctypes,
)
def llama_get_kv_self(ctx: llama_context_p, /) -> Optional[llama_kv_cache_p]:
    """Get the KV cache for self-attention"""
    ...

llama_pooling_type(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_pooling_type", [llama_context_p_ctypes], ctypes.c_int)
def llama_pooling_type(ctx: llama_context_p, /) -> int:
    ...

llama_model_get_vocab(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_get_vocab", [llama_model_p_ctypes], llama_vocab_p_ctypes)
def llama_model_get_vocab(model: llama_model_p, /) -> Optional[llama_vocab_p]:
    ...

llama_model_rope_type(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_rope_type", [llama_model_p_ctypes], ctypes.c_int)
def llama_model_rope_type(model: llama_model_p, /) -> int:
    ...

llama_model_n_ctx_train(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_ctx_train", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_ctx_train(model: llama_model_p, /) -> int:
    ...

llama_model_n_embd(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_embd", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_embd(model: llama_model_p, /) -> int:
    ...

llama_model_n_layer(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_layer", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_layer(model: llama_model_p, /) -> int:
    ...

llama_model_n_head(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_head", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_head(model: llama_model_p, /) -> int:
    ...

llama_model_n_head_kv(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_head_kv", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_head_kv(model: llama_model_p, /) -> int:
    ...

llama_model_rope_freq_scale_train(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_rope_freq_scale_train", [llama_model_p_ctypes], ctypes.c_float)
def llama_model_rope_freq_scale_train(model: llama_model_p, /) -> float:
    ...

llama_vocab_type(model)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_type", [llama_model_p_ctypes], ctypes.c_int)
def llama_vocab_type(model: llama_model_p, /) -> int:
    ...

llama_vocab_n_tokens(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_n_tokens", [llama_vocab_p_ctypes], ctypes.c_int32)
def llama_vocab_n_tokens(vocab: llama_vocab_p, /) -> int:
    ...

llama_model_meta_val_str(model, key, buf, buf_size)

Get metadata value as a string by key name

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_meta_val_str",
    [
        llama_model_p_ctypes,
        ctypes.c_char_p,
        ctypes.c_char_p,
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_model_meta_val_str(
    model: llama_model_p,
    key: Union[ctypes.c_char_p, bytes],
    buf: bytes,
    buf_size: int,
    /,
) -> int:
    """Get metadata value as a string by key name"""
    ...

llama_model_meta_count(model)

Get the number of metadata key/value pairs

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_meta_count", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_meta_count(model: llama_model_p, /) -> int:
    """Get the number of metadata key/value pairs"""
    ...

llama_model_meta_key_by_index(model, i, buf, buf_size)

Get metadata key name by index

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_meta_key_by_index",
    [
        llama_model_p_ctypes,
        ctypes.c_int32,
        ctypes.c_char_p,
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_model_meta_key_by_index(
    model: llama_model_p,
    i: Union[ctypes.c_int, int],
    buf: Union[bytes, CtypesArray[ctypes.c_char]],
    buf_size: int,
    /,
) -> int:
    """Get metadata key name by index"""
    ...

llama_model_meta_val_str_by_index(model, i, buf, buf_size)

Get metadata value as a string by index

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_meta_val_str_by_index",
    [
        llama_model_p_ctypes,
        ctypes.c_int32,
        ctypes.c_char_p,
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_model_meta_val_str_by_index(
    model: llama_model_p,
    i: Union[ctypes.c_int, int],
    buf: Union[bytes, CtypesArray[ctypes.c_char]],
    buf_size: int,
    /,
) -> int:
    """Get metadata value as a string by index"""
    ...

llama_model_desc(model, buf, buf_size)

Get a string describing the model type

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_desc",
    [llama_model_p_ctypes, ctypes.c_char_p, ctypes.c_size_t],
    ctypes.c_int32,
)
def llama_model_desc(
    model: llama_model_p,
    buf: Union[bytes, CtypesArray[ctypes.c_char]],
    buf_size: Union[ctypes.c_size_t, int],
    /,
) -> int:
    """Get a string describing the model type"""
    ...

llama_model_size(model)

Returns the total size of all the tensors in the model in bytes

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_size", [llama_model_p_ctypes], ctypes.c_uint64)
def llama_model_size(model: llama_model_p, /) -> int:
    """Returns the total size of all the tensors in the model in bytes"""
    ...

llama_model_chat_template(model, name)

Get the default chat template. Returns None if not available If name is None, returns the default chat template

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_chat_template", [llama_model_p_ctypes, ctypes.c_char_p], ctypes.c_char_p)
def llama_model_chat_template(model: llama_model_p, name: Optional[bytes], /) -> Optional[bytes]:
    """Get the default chat template. Returns None if not available
    If name is None, returns the default chat template"""
    ...

llama_model_n_params(model)

Returns the total number of parameters in the model

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_params", [llama_model_p_ctypes], ctypes.c_uint64)
def llama_model_n_params(model: llama_model_p, /) -> int:
    """Returns the total number of parameters in the model"""
    ...

llama_model_has_encoder(model)

Returns true if the model contains an encoder that requires llama_encode() call

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_has_encoder", [llama_model_p_ctypes], ctypes.c_bool)
def llama_model_has_encoder(model: llama_model_p, /) -> bool:
    """Returns true if the model contains an encoder that requires llama_encode() call"""
    ...

llama_model_has_decoder(model)

Returns true if the model contains a decoder that requires llama_decode() call

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_has_decoder", [llama_model_p_ctypes], ctypes.c_bool)
def llama_model_has_decoder(model: llama_model_p, /) -> bool:
    """Returns true if the model contains a decoder that requires llama_decode() call"""
    ...

llama_model_decoder_start_token(model)

For encoder-decoder models, this function returns id of the token that must be provided to the decoder to start generating output sequence. For other models, it returns -1.

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_decoder_start_token", [llama_model_p_ctypes], ctypes.c_int32
)
def llama_model_decoder_start_token(model: llama_model_p, /) -> int:
    """For encoder-decoder models, this function returns id of the token that must be provided
    to the decoder to start generating output sequence. For other models, it returns -1.
    """
    ...

llama_model_is_recurrent(model)

Returns true if the model is recurrent (like Mamba, RWKV, etc.)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_model_is_recurrent", [llama_model_p_ctypes], ctypes.c_bool)
def llama_model_is_recurrent(model: llama_model_p, /) -> bool:
    """Returns true if the model is recurrent (like Mamba, RWKV, etc.)"""
    ...

llama_model_quantize(fname_inp, fname_out, params)

Returns 0 on success

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_model_quantize",
    [
        ctypes.c_char_p,
        ctypes.c_char_p,
        ctypes.POINTER(llama_model_quantize_params),
    ],
    ctypes.c_uint32,
)
def llama_model_quantize(
    fname_inp: bytes,
    fname_out: bytes,
    params: CtypesPointerOrRef[llama_model_quantize_params],
    /,
) -> int:
    """Returns 0 on success"""
    ...

llama_adapter_lora_init(model, path_lora)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_adapter_lora_init",
    [llama_model_p_ctypes, ctypes.c_char_p],
    llama_adapter_lora_p_ctypes,
)
def llama_adapter_lora_init(
    model: llama_model_p, path_lora: bytes, /
) -> Optional[llama_adapter_lora_p]:
    ...

llama_adapter_lora_free(adapter)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_adapter_lora_free",
    [llama_adapter_lora_p_ctypes],
    None,
)
def llama_adapter_lora_free(adapter: llama_adapter_lora_p, /):
    ...

llama_set_adapter_lora(ctx, adapter, scale)

Add a loaded LoRA adapter to given context This will not modify model's weight

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_set_adapter_lora",
    [llama_context_p_ctypes, llama_adapter_lora_p_ctypes, ctypes.c_float],
    ctypes.c_int32,
)
def llama_set_adapter_lora(
    ctx: llama_context_p, adapter: llama_adapter_lora_p, scale: float, /
) -> int:
    """Add a loaded LoRA adapter to given context
    This will not modify model's weight"""
    ...

llama_rm_adapter_lora(ctx, adapter)

Remove a specific LoRA adapter from given context Return -1 if the adapter is not present in the context

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_rm_adapter_lora",
    [llama_context_p_ctypes, llama_adapter_lora_p_ctypes],
    ctypes.c_int32,
)
def llama_rm_adapter_lora(
    ctx: llama_context_p, adapter: llama_adapter_lora_p, /
) -> int:
    """Remove a specific LoRA adapter from given context
    Return -1 if the adapter is not present in the context"""
    ...

llama_clear_adapter_lora(ctx)

Remove all LoRA adapters from given context

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_clear_adapter_lora",
    [llama_context_p_ctypes],
    None,
)
def llama_clear_adapter_lora(ctx: llama_context_p, /):
    """Remove all LoRA adapters from given context"""
    ...

llama_apply_adapter_cvec(ctx, data, len, n_embd, il_start, il_end)

Apply a loaded control vector to a llama_context, or if data is NULL, clear the currently loaded vector. n_embd should be the size of a single layer's control, and data should point to an n_embd x n_layers buffer starting from layer 1. il_start and il_end are the layer range the vector should apply to (both inclusive) See llama_control_vector_load in common to load a control vector.

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_apply_adapter_cvec",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_float),
        ctypes.c_size_t,
        ctypes.c_int32,
        ctypes.c_int32,
        ctypes.c_int32,
    ],
    ctypes.c_int32,
)
def llama_apply_adapter_cvec(
    ctx: llama_context_p,
    data: CtypesPointerOrRef[ctypes.c_float],
    len: int,
    n_embd: int,
    il_start: int,
    il_end: int,
    /,
) -> int:
    """Apply a loaded control vector to a llama_context, or if data is NULL, clear
    the currently loaded vector.
    n_embd should be the size of a single layer's control, and data should point
    to an n_embd x n_layers buffer starting from layer 1.
    il_start and il_end are the layer range the vector should apply to (both inclusive)
    See llama_control_vector_load in common to load a control vector."""
    ...

llama_kv_cache_view_cell

Bases: Structure

Information associated with an individual cell in the KV cache view.

Attributes:

  • pos (llama_pos) –

    The position for this cell. Takes KV cache shifts into account. May be negative if the cell is not populated.

Source code in llama_cpp/llama_cpp.py
class llama_kv_cache_view_cell(ctypes.Structure):
    """Information associated with an individual cell in the KV cache view.

    Attributes:
        pos (llama_pos): The position for this cell. Takes KV cache shifts into account.
            May be negative if the cell is not populated."""

    if TYPE_CHECKING:
        pos: llama_pos

    _fields_ = [("pos", llama_pos)]

llama_kv_cache_view

Bases: Structure

Source code in llama_cpp/llama_cpp.py
class llama_kv_cache_view(ctypes.Structure):
    if TYPE_CHECKING:
        n_cells: int
        n_max_seq: int
        token_count: int
        used_cells: int
        max_contiguous: int
        max_contiguous_idx: int
        cells: CtypesArray[llama_kv_cache_view_cell]
        cells_sequences: CtypesArray[llama_seq_id]

    _fields_ = [
        ("n_cells", ctypes.c_int32),
        ("n_max_seq", ctypes.c_int32),
        ("token_count", ctypes.c_int32),
        ("used_cells", ctypes.c_int32),
        ("max_contiguous", ctypes.c_int32),
        ("max_contiguous_idx", ctypes.c_int32),
        ("cells", ctypes.POINTER(llama_kv_cache_view_cell)),
        ("cells_sequences", ctypes.POINTER(llama_seq_id)),
    ]

llama_kv_cache_view_p = ctypes.POINTER(llama_kv_cache_view) module-attribute

llama_kv_cache_view_init(ctx, n_seq_max)

Create an empty KV cache view. (use only for debugging purposes)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_cache_view_init",
    [llama_context_p_ctypes, ctypes.c_int32],
    llama_kv_cache_view,
)
def llama_kv_cache_view_init(
    ctx: llama_context_p, n_seq_max: Union[ctypes.c_int32, int], /
) -> llama_kv_cache_view:
    """Create an empty KV cache view. (use only for debugging purposes)"""
    ...

llama_kv_cache_view_free(view)

Free a KV cache view. (use only for debugging purposes)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_cache_view_free", [llama_kv_cache_view_p], None)
def llama_kv_cache_view_free(view: "ctypes.pointer[llama_kv_cache_view]", /):  # type: ignore
    """Free a KV cache view. (use only for debugging purposes)"""
    ...

llama_kv_cache_view_update(ctx, view)

Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_cache_view_update", [llama_context_p_ctypes, llama_kv_cache_view_p], None
)
def llama_kv_cache_view_update(ctx: llama_context_p, view: CtypesPointerOrRef[llama_kv_cache_view], /):  # type: ignore
    """Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)"""
    ...

llama_kv_self_n_tokens(ctx)

Returns the number of tokens in the KV cache (slow, use only for debug) If a KV cell has multiple sequences assigned to it, it will be counted multiple times

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_n_tokens", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_kv_self_n_tokens(ctx: llama_context_p, /) -> int:
    """Returns the number of tokens in the KV cache (slow, use only for debug)
    If a KV cell has multiple sequences assigned to it, it will be counted multiple times
    """
    ...

llama_get_kv_cache_token_count(ctx)

Returns the number of tokens in the KV cache (slow, use only for debug) If a KV cell has multiple sequences assigned to it, it will be counted multiple times

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_kv_cache_token_count", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_get_kv_cache_token_count(ctx: llama_context_p, /) -> int:
    """Returns the number of tokens in the KV cache (slow, use only for debug)
    If a KV cell has multiple sequences assigned to it, it will be counted multiple times
    """
    ...

llama_kv_self_used_cells(ctx)

Returns the number of used KV cells (i.e. have at least one sequence assigned to them)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_used_cells", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_kv_self_used_cells(ctx: llama_context_p, /) -> int:
    """Returns the number of used KV cells (i.e. have at least one sequence assigned to them)"""
    ...

llama_get_kv_cache_used_cells(ctx)

Returns the number of used KV cells (i.e. have at least one sequence assigned to them)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_kv_cache_used_cells", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_get_kv_cache_used_cells(ctx: llama_context_p, /) -> int:
    """Returns the number of used KV cells (i.e. have at least one sequence assigned to them)"""
    ...

llama_kv_self_clear(ctx)

Clear the KV cache - both cell info is erased and KV data is zeroed

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_clear", [llama_context_p_ctypes], None
)
def llama_kv_self_clear(ctx: llama_context_p, /):
    """Clear the KV cache - both cell info is erased and KV data is zeroed"""
    ...

llama_kv_cache_clear(ctx)

Clear the KV cache

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_clear", [llama_context_p_ctypes], None)
def llama_kv_cache_clear(ctx: llama_context_p, /):
    """Clear the KV cache"""
    ...

llama_kv_cache_seq_rm(ctx, seq_id, p0, p1)

Removes all tokens that belong to the specified sequence and have positions in [p0, p1)

Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails

seq_id < 0 : match any sequence p0 < 0 : [0, p1] p1 < 0 : [p0, inf)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_cache_seq_rm",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
    ],
    ctypes.c_bool,
)
def llama_kv_cache_seq_rm(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    /,
) -> bool:
    """Removes all tokens that belong to the specified sequence and have positions in [p0, p1)

    Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails

    seq_id < 0 : match any sequence
    p0 < 0     : [0,  p1]
    p1 < 0     : [p0, inf)"""
    ...

llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1)

Copy all tokens that belong to the specified sequence to another sequence Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence p0 < 0 : [0, p1] p1 < 0 : [p0, inf)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_cp",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_seq_id,
        llama_pos,
        llama_pos,
    ],
    None,
)
def llama_kv_self_seq_cp(
    ctx: llama_context_p,
    seq_id_src: Union[llama_seq_id, int],
    seq_id_dst: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    /,
):
    """Copy all tokens that belong to the specified sequence to another sequence
    Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...

llama_kv_cache_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1)

Copy all tokens that belong to the specified sequence to another sequence Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence p0 < 0 : [0, p1] p1 < 0 : [p0, inf)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_cp",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_seq_id,
        llama_pos,
        llama_pos,
    ],
    None,
)
def llama_kv_cache_seq_cp(
    ctx: llama_context_p,
    seq_id_src: Union[llama_seq_id, int],
    seq_id_dst: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    /,
):
    """Copy all tokens that belong to the specified sequence to another sequence
    Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...

llama_kv_self_seq_keep(ctx, seq_id)

Removes all tokens that do not belong to the specified sequence

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_keep", [llama_context_p_ctypes, llama_seq_id], None
)
def llama_kv_self_seq_keep(ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /):
    """Removes all tokens that do not belong to the specified sequence"""
    ...

llama_kv_cache_seq_keep(ctx, seq_id)

Removes all tokens that do not belong to the specified sequence

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_keep", [llama_context_p_ctypes, llama_seq_id], None
)
def llama_kv_cache_seq_keep(ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /):
    """Removes all tokens that do not belong to the specified sequence"""
    ...

llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta)

Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) If the KV cache is RoPEd, the KV data is updated accordingly: - lazily on next llama_decode() - explicitly with llama_kv_cache_update() p0 < 0 : [0, p1] p1 < 0 : [p0, inf)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_add",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
        llama_pos,
    ],
    None,
)
def llama_kv_self_seq_add(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    delta: Union[llama_pos, int],
    /,
):
    """Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
    If the KV cache is RoPEd, the KV data is updated accordingly:
    - lazily on next llama_decode()
    - explicitly with llama_kv_cache_update()
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...

llama_kv_cache_seq_add(ctx, seq_id, p0, p1, delta)

Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) If the KV cache is RoPEd, the KV data is updated accordingly: - lazily on next llama_decode() - explicitly with llama_kv_cache_update() p0 < 0 : [0, p1] p1 < 0 : [p0, inf)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_add",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
        llama_pos,
    ],
    None,
)
def llama_kv_cache_seq_add(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    delta: Union[llama_pos, int],
    /,
):
    """Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
    If the KV cache is RoPEd, the KV data is updated accordingly:
    - lazily on next llama_decode()
    - explicitly with llama_kv_cache_update()
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...

llama_kv_self_seq_div(ctx, seq_id, p0, p1, d)

Integer division of the positions by factor of d > 1 If the KV cache is RoPEd, the KV data is updated accordingly p0 < 0 : [0, p1] p1 < 0 : [p0, inf)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_div",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
        ctypes.c_int,
    ],
    None,
)
def llama_kv_self_seq_div(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    d: Union[ctypes.c_int, int],
    /,
):
    """Integer division of the positions by factor of `d > 1`
    If the KV cache is RoPEd, the KV data is updated accordingly
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...

llama_kv_cache_seq_div(ctx, seq_id, p0, p1, d)

Integer division of the positions by factor of d > 1 If the KV cache is RoPEd, the KV data is updated accordingly p0 < 0 : [0, p1] p1 < 0 : [p0, inf)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_div",
    [
        llama_context_p_ctypes,
        llama_seq_id,
        llama_pos,
        llama_pos,
        ctypes.c_int,
    ],
    None,
)
def llama_kv_cache_seq_div(
    ctx: llama_context_p,
    seq_id: Union[llama_seq_id, int],
    p0: Union[llama_pos, int],
    p1: Union[llama_pos, int],
    d: Union[ctypes.c_int, int],
    /,
):
    """Integer division of the positions by factor of `d > 1`
    If the KV cache is RoPEd, the KV data is updated accordingly
    p0 < 0 : [0,  p1]
    p1 < 0 : [p0, inf)"""
    ...

llama_kv_self_seq_pos_max(ctx, seq_id)

Returns the largest position present in the KV cache for the specified sequence

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_kv_self_seq_pos_max", [llama_context_p_ctypes, llama_seq_id], llama_pos
)
def llama_kv_self_seq_pos_max(
    ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /
) -> int:
    """Returns the largest position present in the KV cache for the specified sequence"""
    ...

llama_kv_self_defrag(ctx)

Defragment the KV cache This will be applied: - lazily on next llama_decode() - explicitly with llama_kv_cache_update()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_defrag", [llama_context_p_ctypes], None)
def llama_kv_self_defrag(ctx: llama_context_p, /):
    """Defragment the KV cache
    This will be applied:
    - lazily on next llama_decode()
    - explicitly with llama_kv_cache_update()"""
    ...

llama_kv_cache_defrag(ctx)

Defragment the KV cache This will be applied: - lazily on next llama_decode() - explicitly with llama_kv_cache_update()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_cache_defrag", [llama_context_p_ctypes], None)
def llama_kv_cache_defrag(ctx: llama_context_p, /):
    """Defragment the KV cache
    This will be applied:
    - lazily on next llama_decode()
    - explicitly with llama_kv_cache_update()"""
    ...

llama_kv_self_update(ctx)

Apply the KV cache updates (such as K-shifts, defragmentation, etc.)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_update", [llama_context_p_ctypes], None)
def llama_kv_self_update(ctx: llama_context_p, /):
    """Apply the KV cache updates (such as K-shifts, defragmentation, etc.)"""
    ...

llama_kv_cache_update(ctx)

Apply the KV cache updates (such as K-shifts, defragmentation, etc.)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_update", [llama_context_p_ctypes], None)
def llama_kv_cache_update(ctx: llama_context_p, /):
    """Apply the KV cache updates (such as K-shifts, defragmentation, etc.)"""
    ...

llama_kv_self_can_shift(ctx)

Check if the context supports KV cache shifting

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_can_shift", [llama_context_p_ctypes], ctypes.c_bool)
def llama_kv_self_can_shift(ctx: llama_context_p, /) -> bool:
    """Check if the context supports KV cache shifting"""
    ...

llama_kv_cache_can_shift(ctx)

Check if the context supports KV cache shifting

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_can_shift", [llama_context_p_ctypes], ctypes.c_bool)
def llama_kv_cache_can_shift(ctx: llama_context_p, /) -> bool:
    """Check if the context supports KV cache shifting"""
    ...

llama_state_get_size(ctx)

Returns the actual size in bytes of the state (rng, logits, embedding and kv_cache) - will often be smaller after compacting tokens

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_state_get_size", [llama_context_p_ctypes], ctypes.c_size_t)
def llama_state_get_size(ctx: llama_context_p, /) -> int:
    """Returns the *actual* size in bytes of the state (rng, logits, embedding and kv_cache) - will often be smaller after compacting tokens"""
    ...

llama_get_state_size(ctx)

Returns the maximum size in bytes of the state (rng, logits, embedding and kv_cache) - will often be smaller after compacting tokens

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_get_state_size", [llama_context_p_ctypes], ctypes.c_size_t)
def llama_get_state_size(ctx: llama_context_p, /) -> int:
    """Returns the maximum size in bytes of the state (rng, logits, embedding
    and kv_cache) - will often be smaller after compacting tokens"""
    ...

llama_state_get_data(ctx, dst, size)

Copies the state to the specified destination address. Destination needs to have allocated enough memory. Returns the number of bytes copied

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_get_data",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_uint8),
        ctypes.c_size_t,
    ],
    ctypes.c_size_t,
)
def llama_state_get_data(
    ctx: llama_context_p,
    dst: CtypesArray[ctypes.c_uint8],
    size: Union[ctypes.c_size_t, int],
    /,
) -> int:
    """Copies the state to the specified destination address.
    Destination needs to have allocated enough memory.
    Returns the number of bytes copied"""
    ...

llama_copy_state_data(ctx, dst)

Copies the state to the specified destination address. Destination needs to have allocated enough memory. Returns the number of bytes copied

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_copy_state_data",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_uint8),
    ],
    ctypes.c_size_t,
)
def llama_copy_state_data(
    ctx: llama_context_p, dst: CtypesArray[ctypes.c_uint8], /
) -> int:
    """Copies the state to the specified destination address.
    Destination needs to have allocated enough memory.
    Returns the number of bytes copied"""
    ...

llama_state_set_data(ctx, src, size)

Set the state reading from the specified address Returns the number of bytes read

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_set_data",
    [llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8), ctypes.c_size_t],
    ctypes.c_size_t,
)
def llama_state_set_data(
    ctx: llama_context_p,
    src: CtypesArray[ctypes.c_uint8],
    size: Union[ctypes.c_size_t, int],
    /,
) -> int:
    """Set the state reading from the specified address
    Returns the number of bytes read"""
    ...

llama_set_state_data(ctx, src)

Set the state reading from the specified address

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_set_state_data",
    [llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8)],
    ctypes.c_size_t,
)
def llama_set_state_data(
    ctx: llama_context_p, src: CtypesArray[ctypes.c_uint8], /
) -> int:
    """Set the state reading from the specified address"""
    ...

llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_load_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
        ctypes.POINTER(ctypes.c_size_t),
    ],
    ctypes.c_bool,
)
def llama_state_load_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens_out: CtypesArray[llama_token],
    n_token_capacity: Union[ctypes.c_size_t, int],
    n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
    /,
) -> bool:
    ...

llama_load_session_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_load_session_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
        ctypes.POINTER(ctypes.c_size_t),
    ],
    ctypes.c_size_t,
)
def llama_load_session_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens_out: CtypesArray[llama_token],
    n_token_capacity: Union[ctypes.c_size_t, int],
    n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
    /,
) -> int:
    ...

llama_state_save_file(ctx, path_session, tokens, n_token_count)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_save_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
    ],
    ctypes.c_bool,
)
def llama_state_save_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens: CtypesArray[llama_token],
    n_token_count: Union[ctypes.c_size_t, int],
    /,
) -> bool:
    ...

llama_save_session_file(ctx, path_session, tokens, n_token_count)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_save_session_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_token_p,
        ctypes.c_size_t,
    ],
    ctypes.c_size_t,
)
def llama_save_session_file(
    ctx: llama_context_p,
    path_session: bytes,
    tokens: CtypesArray[llama_token],
    n_token_count: Union[ctypes.c_size_t, int],
    /,
) -> int:
    ...

llama_state_seq_get_size(ctx, seq_id)

Get the exact size needed to copy the KV cache of a single sequence

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_seq_get_size",
    [llama_context_p_ctypes, llama_seq_id],
    ctypes.c_size_t,
)
def llama_state_seq_get_size(ctx: llama_context_p, seq_id: llama_seq_id, /) -> int:
    """Get the exact size needed to copy the KV cache of a single sequence"""
    ...

llama_state_seq_get_data(ctx, dst, size, seq_id)

Copy the KV cache of a single sequence into the specified buffer

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_seq_get_data",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_uint8),
        ctypes.c_size_t,
        llama_seq_id,
    ],
    ctypes.c_size_t,
)
def llama_state_seq_get_data(
    ctx: llama_context_p,
    dst: CtypesArray[ctypes.c_uint8],
    size: Union[ctypes.c_size_t, int],
    seq_id: llama_seq_id,
    /,
) -> int:
    """Copy the KV cache of a single sequence into the specified buffer"""
    ...

llama_state_seq_set_data(ctx, src, size, dest_seq_id)

Copy the sequence data (originally copied with llama_state_seq_get_data) into the specified sequence

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_seq_set_data",
    [
        llama_context_p_ctypes,
        ctypes.POINTER(ctypes.c_uint8),
        ctypes.c_size_t,
        llama_seq_id,
    ],
    ctypes.c_size_t,
)
def llama_state_seq_set_data(
    ctx: llama_context_p,
    src: CtypesArray[ctypes.c_uint8],
    size: Union[ctypes.c_size_t, int],
    dest_seq_id: llama_seq_id,
    /,
) -> int:
    """Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence"""
    ...

llama_state_seq_save_file(ctx, filepath, seq_id, tokens, n_token_count)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_seq_save_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_seq_id,
        llama_token_p,
        ctypes.c_size_t,
    ],
    ctypes.c_size_t,
)
def llama_state_seq_save_file(
    ctx: llama_context_p,
    filepath: bytes,
    seq_id: llama_seq_id,
    tokens: CtypesArray[llama_token],
    n_token_count: Union[ctypes.c_size_t, int],
    /,
) -> int:
    ...

llama_state_seq_load_file(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_state_seq_load_file",
    [
        llama_context_p_ctypes,
        ctypes.c_char_p,
        llama_seq_id,
        llama_token_p,
        ctypes.c_size_t,
        ctypes.POINTER(ctypes.c_size_t),
    ],
    ctypes.c_size_t,
)
def llama_state_seq_load_file(
    ctx: llama_context_p,
    filepath: bytes,
    dest_seq_id: llama_seq_id,
    tokens_out: CtypesArray[llama_token],
    n_token_capacity: Union[ctypes.c_size_t, int],
    n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
    /,
) -> int:
    ...

llama_batch_get_one(tokens, n_tokens)

Return batch for single sequence of tokens starting at pos_0

NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_batch_get_one",
    [
        llama_token_p,
        ctypes.c_int32,
    ],
    llama_batch,
)
def llama_batch_get_one(
    tokens: CtypesArray[llama_token],
    n_tokens: Union[ctypes.c_int, int],
    /,
) -> llama_batch:
    """Return batch for single sequence of tokens starting at pos_0

    NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
    """
    ...

llama_batch_init(n_tokens, embd, n_seq_max)

Allocates a batch of tokens on the heap that can hold a maximum of n_tokens Each token can be assigned up to n_seq_max sequence ids The batch has to be freed with llama_batch_free() If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float) Otherwise, llama_batch.token will be allocated to store n_tokens llama_token The rest of the llama_batch members are allocated with size n_tokens All members are left uninitialized

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_batch_init", [ctypes.c_int32, ctypes.c_int32, ctypes.c_int32], llama_batch
)
def llama_batch_init(
    n_tokens: Union[ctypes.c_int32, int],
    embd: Union[ctypes.c_int32, int],
    n_seq_max: Union[ctypes.c_int32, int],
    /,
) -> llama_batch:
    """Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
    Each token can be assigned up to n_seq_max sequence ids
    The batch has to be freed with llama_batch_free()
    If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
    Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
    The rest of the llama_batch members are allocated with size n_tokens
    All members are left uninitialized"""
    ...

llama_batch_free(batch)

Frees a batch of tokens allocated with llama_batch_init()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_batch_free", [llama_batch], None)
def llama_batch_free(batch: llama_batch, /):
    """Frees a batch of tokens allocated with llama_batch_init()"""
    ...

llama_encode(ctx, batch)

Processes a batch of tokens with the ecoder part of the encoder-decoder model. Stores the encoder output internally for later use by the decoder cross-attention layers. 0 - success < 0 - error

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_encode", [llama_context_p_ctypes, llama_batch], ctypes.c_int32)
def llama_encode(ctx: llama_context_p, batch: llama_batch, /) -> int:
    """Processes a batch of tokens with the ecoder part of the encoder-decoder model.
    Stores the encoder output internally for later use by the decoder cross-attention layers.
    0 - success
    < 0 - error"""
    ...

llama_decode(ctx, batch)

Positive return values does not mean a fatal error, but rather a warning. 0 - success 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) < 0 - error

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_decode", [llama_context_p_ctypes, llama_batch], ctypes.c_int32)
def llama_decode(ctx: llama_context_p, batch: llama_batch, /) -> int:
    """Positive return values does not mean a fatal error, but rather a warning.
    0 - success
    1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
    < 0 - error"""
    ...

llama_set_n_threads(ctx, n_threads, n_threads_batch)

Set the number of threads used for decoding n_threads is the number of threads used for generation (single token) n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_set_n_threads",
    [
        llama_context_p_ctypes,
        ctypes.c_int32,
        ctypes.c_int32,
    ],
    None,
)
def llama_set_n_threads(
    ctx: llama_context_p,
    n_threads: Union[ctypes.c_int32, int],
    n_threads_batch: Union[ctypes.c_int32, int],
    /,
):
    """Set the number of threads used for decoding
    n_threads is the number of threads used for generation (single token)
    n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
    """
    ...

llama_n_threads(ctx)

Get the number of threads used for generation of a single token

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_threads", [llama_context_p_ctypes], ctypes.c_int32)
def llama_n_threads(ctx: llama_context_p, /) -> int:
    """Get the number of threads used for generation of a single token"""
    ...

llama_n_threads_batch(ctx)

Get the number of threads used for prompt and batch processing (multiple token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_n_threads_batch", [llama_context_p_ctypes], ctypes.c_int32)
def llama_n_threads_batch(ctx: llama_context_p, /) -> int:
    """Get the number of threads used for prompt and batch processing (multiple token)"""
    ...

llama_set_embeddings(ctx, embeddings)

Set whether the model is in embeddings model or not If true, embeddings will be returned but logits will not

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_set_embeddings", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_embeddings(ctx: llama_context_p, embeddings: bool, /):
    """Set whether the model is in embeddings model or not
    If true, embeddings will be returned but logits will not"""
    ...

llama_set_causal_attn(ctx, causal_attn)

Set whether to use causal attention or not If set to true, the model will only attend to the past tokens

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_set_causal_attn", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_causal_attn(ctx: llama_context_p, causal_attn: bool, /):
    """Set whether to use causal attention or not
    If set to true, the model will only attend to the past tokens"""
    ...

llama_set_warmup(ctx, warmup)

Set whether the model is in warmup mode or not If true, all model tensors are activated during llama_decode() to load and cache their weights.

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_set_warmup", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_warmup(ctx: llama_context_p, warmup: bool, /):
    """Set whether the model is in warmup mode or not
    If true, all model tensors are activated during llama_decode() to load and cache their weights."""
    ...

llama_set_abort_callback(ctx, abort_callback, abort_callback_data)

Set abort callback

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_set_abort_callback",
    [llama_context_p_ctypes, ggml_abort_callback, ctypes.c_void_p],
    None,
)
def llama_set_abort_callback(
    ctx: llama_context_p,
    abort_callback: Callable[[ctypes.c_void_p], None],
    abort_callback_data: ctypes.c_void_p,
    /,
):
    """Set abort callback"""
    ...

llama_synchronize(ctx)

Wait until all computations are finished This is automatically done when using one of the functions below to obtain the computation results and is not necessary to call it explicitly in most cases

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_synchronize", [llama_context_p_ctypes], None)
def llama_synchronize(ctx: llama_context_p, /):
    """Wait until all computations are finished
    This is automatically done when using one of the functions below to obtain the computation results
    and is not necessary to call it explicitly in most cases"""
    ...

llama_get_logits(ctx)

Token logits obtained from the last call to llama_decode() The logits for which llama_batch.logits[i] != 0 are stored contiguously in the order they have appeared in the batch. Rows: number of tokens for which llama_batch.logits[i] != 0 Cols: n_vocab

Returns:

  • CtypesArray[c_float] –

    Pointer to the logits buffer of shape (n_tokens, n_vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_logits", [llama_context_p_ctypes], ctypes.POINTER(ctypes.c_float)
)
def llama_get_logits(ctx: llama_context_p, /) -> CtypesArray[ctypes.c_float]:
    """Token logits obtained from the last call to llama_decode()
    The logits for which llama_batch.logits[i] != 0 are stored contiguously
    in the order they have appeared in the batch.
    Rows: number of tokens for which llama_batch.logits[i] != 0
    Cols: n_vocab

    Returns:
        Pointer to the logits buffer of shape (n_tokens, n_vocab)"""
    ...

llama_get_logits_ith(ctx, i)

Logits for the ith token. Equivalent to: llama_get_logits(ctx) + i*n_vocab

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_logits_ith",
    [llama_context_p_ctypes, ctypes.c_int32],
    ctypes.POINTER(ctypes.c_float),
)
def llama_get_logits_ith(
    ctx: llama_context_p, i: Union[ctypes.c_int32, int], /
) -> CtypesArray[ctypes.c_float]:
    """Logits for the ith token. Equivalent to:
    llama_get_logits(ctx) + i*n_vocab"""
    ...

llama_get_embeddings(ctx)

Get the embeddings for the input shape: [n_embd] (1-dimensional)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_embeddings", [llama_context_p_ctypes], ctypes.POINTER(ctypes.c_float)
)
def llama_get_embeddings(ctx: llama_context_p, /) -> CtypesArray[ctypes.c_float]:
    """Get the embeddings for the input
    shape: [n_embd] (1-dimensional)"""
    ...

llama_get_embeddings_ith(ctx, i)

Get the embeddings for the ith sequence llama_get_embeddings(ctx) + i*n_embd

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_embeddings_ith",
    [llama_context_p_ctypes, ctypes.c_int32],
    ctypes.POINTER(ctypes.c_float),
)
def llama_get_embeddings_ith(
    ctx: llama_context_p, i: Union[ctypes.c_int32, int], /
) -> CtypesArray[ctypes.c_float]:
    """Get the embeddings for the ith sequence
    llama_get_embeddings(ctx) + i*n_embd"""
    ...

llama_get_embeddings_seq(ctx, seq_id)

Get the embeddings for a sequence id Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE shape: [n_embd] (1-dimensional)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_get_embeddings_seq",
    [llama_context_p_ctypes, llama_seq_id],
    ctypes.POINTER(ctypes.c_float),
)
def llama_get_embeddings_seq(
    ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /
) -> CtypesArray[ctypes.c_float]:
    """Get the embeddings for a sequence id
    Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
    shape: [n_embd] (1-dimensional)"""
    ...

llama_vocab_get_text(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_get_text", [llama_vocab_p_ctypes, llama_token], ctypes.c_char_p
)
def llama_vocab_get_text(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bytes:
    ...

llama_vocab_get_score(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_get_score", [llama_vocab_p_ctypes, llama_token], ctypes.c_float
)
def llama_vocab_get_score(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> float:
    ...

llama_vocab_get_attr(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_get_attr", [llama_vocab_p_ctypes, llama_token], ctypes.c_int
)
def llama_vocab_get_attr(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> int:
    ...

llama_vocab_is_eog(vocab, token)

Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_is_eog", [llama_vocab_p_ctypes, llama_token], ctypes.c_bool
)
def llama_vocab_is_eog(vocab: llama_vocab_p, token: Union[llama_token, int], /) -> bool:
    """Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)"""
    ...

llama_vocab_is_control(vocab, token)

Identify if Token Id is a control token or a render-able token

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_is_control", [llama_vocab_p_ctypes, llama_token], ctypes.c_bool
)
def llama_vocab_is_control(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bool:
    """Identify if Token Id is a control token or a render-able token"""
    ...

llama_vocab_bos(vocab)

beginning-of-sentence

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_bos", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_bos(vocab: llama_vocab_p, /) -> llama_token:
    """beginning-of-sentence"""
    ...

llama_vocab_eos(vocab)

end-of-sentence

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_eos", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_eos(vocab: llama_vocab_p, /) -> llama_token:
    """end-of-sentence"""
    ...

llama_vocab_eot(vocab)

end-of-turn

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_eot", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_eot(vocab: llama_vocab_p, /) -> llama_token:
    """end-of-turn"""
    ...

llama_vocab_sep(vocab)

sentence separator

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_sep", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_sep(vocab: llama_vocab_p, /) -> llama_token:
    """sentence separator"""
    ...

llama_vocab_nl(vocab)

next-line

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_nl", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_nl(vocab: llama_vocab_p, /) -> llama_token:
    """next-line"""
    ...

llama_vocab_pad(vocab)

padding

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_pad", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_pad(vocab: llama_vocab_p, /) -> llama_token:
    """padding"""
    ...

llama_vocab_get_add_bos(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_get_add_bos",
    [llama_vocab_p_ctypes],
    ctypes.c_bool,
)
def llama_vocab_get_add_bos(vocab: llama_vocab_p, /) -> bool:
    ...

llama_vocab_get_add_eos(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_get_add_eos",
    [llama_vocab_p_ctypes],
    ctypes.c_bool,
)
def llama_vocab_get_add_eos(vocab: llama_vocab_p, /) -> bool:
    ...

llama_vocab_fim_pre(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_fim_pre",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_vocab_fim_pre(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_vocab_fim_suf(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_fim_suf",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_vocab_fim_suf(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_vocab_fim_mid(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_fim_mid",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_vocab_fim_mid(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_vocab_fim_pad(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_fim_pad",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_vocab_fim_pad(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_vocab_fim_rep(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_fim_rep",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_vocab_fim_rep(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_vocab_fim_sep(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_fim_sep",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_vocab_fim_sep(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_token_get_text(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_get_text",
    [llama_vocab_p_ctypes, llama_token],
    ctypes.c_char_p,
)
def llama_token_get_text(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bytes:
    ...

llama_token_get_score(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_get_score",
    [llama_vocab_p_ctypes, llama_token],
    ctypes.c_float,
)
def llama_token_get_score(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> float:
    ...

llama_token_get_attr(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_get_attr",
    [llama_vocab_p_ctypes, llama_token],
    ctypes.c_int,
)
def llama_token_get_attr(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> int:
    ...

llama_token_is_eog(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_is_eog",
    [llama_vocab_p_ctypes, llama_token],
    ctypes.c_bool,
)
def llama_token_is_eog(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bool:
    ...

llama_token_is_control(vocab, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_is_control",
    [llama_vocab_p_ctypes, llama_token],
    ctypes.c_bool,
)
def llama_token_is_control(
    vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bool:
    ...

llama_token_bos(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_bos",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_bos(vocab: llama_vocab_p, /) -> int:
    ...

llama_token_eos(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_eos",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_eos(vocab: llama_vocab_p, /) -> int:
    ...

llama_token_eot(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_eot",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_eot(vocab: llama_vocab_p, /) -> int:
    ...

llama_token_cls(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_cls",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_cls(vocab: llama_vocab_p, /) -> int:
    ...

llama_token_sep(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_sep",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_sep(vocab: llama_vocab_p, /) -> int:
    ...

llama_token_nl(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_nl",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_nl(vocab: llama_vocab_p, /) -> int:
    ...

llama_token_pad(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_pad",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_pad(vocab: llama_vocab_p, /) -> int:
    ...

llama_add_bos_token(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_add_bos_token",
    [llama_vocab_p_ctypes],
    ctypes.c_bool,
)
def llama_add_bos_token(vocab: llama_vocab_p, /) -> bool:
    ...

llama_add_eos_token(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_add_eos_token",
    [llama_vocab_p_ctypes],
    ctypes.c_bool,
)
def llama_add_eos_token(vocab: llama_vocab_p, /) -> bool:
    ...

llama_token_fim_pre(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_fim_pre",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_fim_pre(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_token_fim_suf(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_fim_suf",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_fim_suf(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_token_fim_mid(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_fim_mid",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_fim_mid(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_token_fim_pad(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_fim_pad",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_fim_pad(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_token_fim_rep(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_fim_rep",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_fim_rep(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_token_fim_sep(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_fim_sep",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_token_fim_sep(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_vocab_cls(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_vocab_cls",
    [llama_vocab_p_ctypes],
    llama_token,
)
def llama_vocab_cls(vocab: llama_vocab_p, /) -> llama_token:
    ...

llama_tokenize(vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special)

Convert the provided text into tokens.

Parameters:

  • vocab (llama_vocab_p) –

    The vocabulary to use for tokenization.

  • text (bytes) –

    The text to tokenize.

  • text_len (Union[c_int, int]) –

    The length of the text.

  • tokens (CtypesArray[llama_token]) –

    The tokens pointer must be large enough to hold the resulting tokens.

  • n_max_tokens –

    The maximum number of tokens to return.

  • add_special (Union[c_bool, bool]) –

    Allow adding special tokenns if the model is configured to do so.

  • parse_special (Union[c_bool, bool]) –

    Allow parsing special tokens.

Returns:

  • int –

    Returns the number of tokens on success, no more than n_tokens_max

  • int –

    Returns a negative number on failure - the number of tokens that would have been returned

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_tokenize",
    [
        llama_vocab_p_ctypes,
        ctypes.c_char_p,
        ctypes.c_int32,
        llama_token_p,
        ctypes.c_int32,
        ctypes.c_bool,
        ctypes.c_bool,
    ],
    ctypes.c_int32,
)
def llama_tokenize(
    vocab: llama_vocab_p,
    text: bytes,
    text_len: Union[ctypes.c_int, int],
    tokens: CtypesArray[llama_token],
    n_tokens_max: Union[ctypes.c_int, int],
    add_special: Union[ctypes.c_bool, bool],
    parse_special: Union[ctypes.c_bool, bool],
    /,
) -> int:
    """Convert the provided text into tokens.

    Args:
        vocab: The vocabulary to use for tokenization.
        text: The text to tokenize.
        text_len: The length of the text.
        tokens: The tokens pointer must be large enough to hold the resulting tokens.
        n_max_tokens: The maximum number of tokens to return.
        add_special: Allow adding special tokenns if the model is configured to do so.
        parse_special: Allow parsing special tokens.

    Returns:
        Returns the number of tokens on success, no more than n_tokens_max
        Returns a negative number on failure - the number of tokens that would have been returned
    """
    ...

llama_token_to_piece(vocab, token, buf, length, lstrip, special)

Token Id -> Piece. Uses the vocabulary in the provided context. Does not write null terminator to the buffer. User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.

Parameters:

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_token_to_piece",
    [
        llama_vocab_p_ctypes,
        llama_token,
        ctypes.c_char_p,
        ctypes.c_int32,
        ctypes.c_int32,
        ctypes.c_bool,
    ],
    ctypes.c_int32,
)
def llama_token_to_piece(
    vocab: llama_vocab_p,
    token: Union[llama_token, int],
    buf: Union[ctypes.c_char_p, bytes, CtypesArray[ctypes.c_char]],
    length: Union[ctypes.c_int, int],
    lstrip: Union[ctypes.c_int, int],
    special: Union[ctypes.c_bool, bool],
    /,
) -> int:
    """Token Id -> Piece.
    Uses the vocabulary in the provided context.
    Does not write null terminator to the buffer.
    User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.

    Args:
        vocab: The vocabulary to use for tokenization.
        token: The token to convert.
        buf: The buffer to write the token to.
        length: The length of the buffer.
        lstrip: The number of leading spaces to skip.
        special: If true, special tokens are rendered in the output."""
    ...

llama_detokenize(model, tokens, n_tokens, text, text_len_max, remove_special, unparse_special)

Convert the provided tokens into text (inverse of llama_tokenize()).

Parameters:

  • model (llama_model_p) –

    The model to use for tokenization.

  • tokens (CtypesArray[llama_token]) –

    The tokens to convert.

  • n_tokens (Union[c_int, int]) –

    The number of tokens.

  • text (bytes) –

    The buffer to write the text to.

  • text_len_max (Union[c_int, int]) –

    The length of the buffer.

  • remove_special (Union[c_bool, bool]) –

    Allow to remove BOS and EOS tokens if model is configured to do so.

  • unparse_special (Union[c_bool, bool]) –

    If true, special tokens are rendered in the output.

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_detokenize",
    [
        llama_model_p_ctypes,
        ctypes.POINTER(llama_token),
        ctypes.c_int32,
        ctypes.c_char_p,
        ctypes.c_int32,
        ctypes.c_bool,
        ctypes.c_bool,
    ],
    ctypes.c_int32,
)
def llama_detokenize(
    model: llama_model_p,
    tokens: CtypesArray[llama_token],
    n_tokens: Union[ctypes.c_int, int],
    text: bytes,
    text_len_max: Union[ctypes.c_int, int],
    remove_special: Union[ctypes.c_bool, bool],
    unparse_special: Union[ctypes.c_bool, bool],
    /,
) -> int:
    """Convert the provided tokens into text (inverse of llama_tokenize()).

    Args:
        model: The model to use for tokenization.
        tokens: The tokens to convert.
        n_tokens: The number of tokens.
        text: The buffer to write the text to.
        text_len_max: The length of the buffer.
        remove_special: Allow to remove BOS and EOS tokens if model is configured to do so.
        unparse_special: If true, special tokens are rendered in the output."""
    ...

llama_chat_apply_template(tmpl, chat, n_msg, add_ass, buf, length)

Apply chat template.

Parameters:

  • tmpl (bytes) –

    Template to use. If None, uses model's default

  • chat (CtypesArray[llama_chat_message]) –

    Array of chat messages

  • n_msg (int) –

    Number of messages

  • add_ass (bool) –

    Whether to end prompt with assistant token

  • buf (bytes) –

    Output buffer

  • length (int) –

    Buffer length

Returns:

  • int –

    Number of bytes written, or needed if buffer too small

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_chat_apply_template",
    [
        ctypes.c_char_p,  # tmpl
        ctypes.POINTER(llama_chat_message),  # chat
        ctypes.c_size_t,  # n_msg
        ctypes.c_bool,    # add_ass (added)
        ctypes.c_char_p,  # buf
        ctypes.c_int32,   # length
    ],
    ctypes.c_int32,
)
def llama_chat_apply_template(
    tmpl: bytes,
    chat: CtypesArray[llama_chat_message],
    n_msg: int,
    add_ass: bool,  # Added parameter
    buf: bytes,
    length: int,
    /,
) -> int:
    """Apply chat template.

    Args:
        tmpl: Template to use. If None, uses model's default
        chat: Array of chat messages
        n_msg: Number of messages
        add_ass: Whether to end prompt with assistant token
        buf: Output buffer
        length: Buffer length

    Returns:
        Number of bytes written, or needed if buffer too small
    """
    ...

llama_chat_builtin_templates(output, len)

Get list of built-in chat templates.

Parameters:

  • output (CtypesArray[bytes]) –

    Output buffer to store template names.

  • len (Union[c_size_t, int]) –

    Length of the output buffer.

Returns:

  • int –

    Number of templates available.

  • int –

    Returns a negative number on error.

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_chat_builtin_templates",
    [
        ctypes.POINTER(ctypes.c_char_p),
        ctypes.c_size_t,
    ],
    ctypes.c_int32,
)
def llama_chat_builtin_templates(
    output: CtypesArray[bytes],
    len: Union[ctypes.c_size_t, int],
    /,
) -> int:
    """Get list of built-in chat templates.

    Args:
        output: Output buffer to store template names.
        len: Length of the output buffer.

    Returns:
        Number of templates available.
        Returns a negative number on error.
    """
    ...

llama_sampler_context_t = ctypes.c_void_p module-attribute

llama_sampler_i

Bases: Structure

Source code in llama_cpp/llama_cpp.py
class llama_sampler_i(ctypes.Structure):
    ...

llama_sampler

Bases: Structure

Source code in llama_cpp/llama_cpp.py
class llama_sampler(ctypes.Structure):
    _fields_ = [
        ("iface", ctypes.POINTER(llama_sampler_i)),
        ("ctx", llama_sampler_context_t),
    ]

llama_sampler_p = CtypesPointer[llama_sampler] module-attribute

llama_sampler_p_ctypes = ctypes.POINTER(llama_sampler) module-attribute

llama_sampler_i_name = ctypes.CFUNCTYPE(ctypes.c_char_p, llama_sampler_p_ctypes) module-attribute

llama_sampler_i_accept = ctypes.CFUNCTYPE(None, llama_sampler_p_ctypes, llama_token) module-attribute

llama_sampler_i_apply = ctypes.CFUNCTYPE(None, llama_sampler_p_ctypes, llama_token_data_array_p) module-attribute

llama_sampler_i_reset = ctypes.CFUNCTYPE(None, llama_sampler_p_ctypes) module-attribute

llama_sampler_i_clone = ctypes.CFUNCTYPE(llama_sampler_p_ctypes, llama_sampler_p_ctypes) module-attribute

llama_sampler_i_free = ctypes.CFUNCTYPE(None, llama_sampler_p_ctypes) module-attribute

llama_sampler_init(iface, ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init",
    [ctypes.POINTER(llama_sampler_i), llama_sampler_context_t],
    llama_sampler_p_ctypes,
)
def llama_sampler_init(
    iface: ctypes.POINTER(llama_sampler_i), ctx: llama_sampler_context_t, /
) -> llama_sampler_p:
    ...

llama_sampler_name(smpl)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_name",
    [llama_sampler_p_ctypes],
    ctypes.c_char_p,
)
def llama_sampler_name(smpl: llama_sampler_p, /) -> bytes:
    ...

llama_sampler_accept(smpl, token)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_accept",
    [llama_sampler_p_ctypes, llama_token],
    None,
)
def llama_sampler_accept(smpl: llama_sampler_p, token: Union[llama_token, int], /):
    ...

llama_sampler_apply(smpl, cur_p)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_apply",
    [llama_sampler_p_ctypes, llama_token_data_array_p],
    None,
)
def llama_sampler_apply(
    smpl: llama_sampler_p, cur_p: CtypesArray[llama_token_data_array], /
):
    ...

llama_sampler_reset(smpl)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_reset",
    [llama_sampler_p_ctypes],
    None,
)
def llama_sampler_reset(smpl: llama_sampler_p, /):
    ...

llama_sampler_clone(smpl)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_clone",
    [llama_sampler_p_ctypes],
    llama_sampler_p_ctypes,
)
def llama_sampler_clone(smpl: llama_sampler_p, /) -> llama_sampler_p:
    ...

llama_sampler_free(smpl)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_free",
    [llama_sampler_p_ctypes],
    None,
)
def llama_sampler_free(smpl: llama_sampler_p, /):
    ...

llama_sampler_chain_init(params)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_chain_init",
    [llama_sampler_chain_params],
    llama_sampler_p_ctypes,
)
def llama_sampler_chain_init(params: llama_sampler_chain_params, /) -> llama_sampler_p:
    ...

llama_sampler_chain_add(chain, smpl)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_chain_add",
    [llama_sampler_p_ctypes, llama_sampler_p_ctypes],
    None,
)
def llama_sampler_chain_add(chain: llama_sampler_p, smpl: llama_sampler_p, /):
    ...

llama_sampler_chain_get(chain, i)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_chain_get",
    [llama_sampler_p_ctypes, ctypes.c_int32],
    llama_sampler_p_ctypes,
)
def llama_sampler_chain_get(
    chain: llama_sampler_p, i: Union[ctypes.c_int32, int], /
) -> llama_sampler_p:
    ...

llama_sampler_chain_n(chain)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_chain_n",
    [llama_sampler_p_ctypes],
    ctypes.c_int,
)
def llama_sampler_chain_n(chain: llama_sampler_p, /) -> int:
    ...

llama_sampler_chain_remove(chain, i)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_chain_remove",
    [llama_sampler_p_ctypes, ctypes.c_int32],
    llama_sampler_p_ctypes,
)
def llama_sampler_chain_remove(
    chain: llama_sampler_p, i: Union[ctypes.c_int32, int], /
) -> llama_sampler_p:
    ...

llama_sampler_init_greedy()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_greedy", [], llama_sampler_p_ctypes)
def llama_sampler_init_greedy() -> llama_sampler_p:
    ...

llama_sampler_init_dist(seed)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_dist", [ctypes.c_uint32], llama_sampler_p_ctypes)
def llama_sampler_init_dist(seed: int) -> llama_sampler_p:
    ...

llama_sampler_init_softmax()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_softmax", [], llama_sampler_p_ctypes)
def llama_sampler_init_softmax() -> llama_sampler_p:
    ...

llama_sampler_init_top_k(k)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_top_k", [ctypes.c_int32], llama_sampler_p_ctypes)
def llama_sampler_init_top_k(k: int) -> llama_sampler_p:
    ...

llama_sampler_init_top_p(p, min_keep)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_top_p",
    [ctypes.c_float, ctypes.c_size_t],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_top_p(p: float, min_keep: int) -> llama_sampler_p:
    ...

llama_sampler_init_min_p(p, min_keep)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_min_p",
    [ctypes.c_float, ctypes.c_size_t],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_min_p(p: float, min_keep: int) -> llama_sampler_p:
    ...

llama_sampler_init_typical(p, min_keep)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_typical",
    [ctypes.c_float, ctypes.c_size_t],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_typical(p: float, min_keep: int) -> llama_sampler_p:
    ...

llama_sampler_init_temp(t)

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_temp", [ctypes.c_float], llama_sampler_p_ctypes)
def llama_sampler_init_temp(t: float) -> llama_sampler_p:
    ...

llama_sampler_init_temp_ext(t, delta, exponent)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_temp_ext",
    [ctypes.c_float, ctypes.c_float, ctypes.c_float],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_temp_ext(
    t: float, delta: float, exponent: float
) -> llama_sampler_p:
    ...

llama_sampler_init_xtc(p, t, min_keep, seed)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_xtc",
    [ctypes.c_float, ctypes.c_float, ctypes.c_size_t, ctypes.c_uint32],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_xtc(
    p: float, t: float, min_keep: int, seed: int, /
) -> llama_sampler_p:
    ...

llama_sampler_init_top_n_sigma(n)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_top_n_sigma",
    [ctypes.c_float],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_top_n_sigma(n: float, /) -> llama_sampler_p:
    ...

llama_sampler_init_mirostat(n_vocab, seed, tau, eta, m)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_mirostat",
    [ctypes.c_int32, ctypes.c_uint32, ctypes.c_float, ctypes.c_float, ctypes.c_int32],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_mirostat(
    n_vocab: int, seed: int, tau: float, eta: float, m: int, /
) -> llama_sampler_p:
    ...

llama_sampler_init_mirostat_v2(seed, tau, eta)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_mirostat_v2",
    [ctypes.c_uint32, ctypes.c_float, ctypes.c_float],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_mirostat_v2(
    seed: int, tau: float, eta: float, /
) -> llama_sampler_p:
    ...

llama_sampler_init_grammar(vocab, grammar_str, grammar_root)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_grammar",
    [llama_vocab_p_ctypes, ctypes.c_char_p, ctypes.c_char_p],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_grammar(
    vocab: llama_vocab_p, grammar_str: bytes, grammar_root: bytes, /
) -> llama_sampler_p:
    ...

llama_sampler_init_grammar_lazy_patterns(vocab, grammar_str, grammar_root, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_grammar_lazy_patterns",
    [
        llama_vocab_p_ctypes,
        ctypes.c_char_p,
        ctypes.c_char_p,
        ctypes.POINTER(ctypes.c_char_p),
        ctypes.c_size_t,
        ctypes.POINTER(llama_token),
        ctypes.c_size_t,
    ],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_grammar_lazy_patterns(
    vocab: llama_vocab_p,
    grammar_str: bytes,
    grammar_root: bytes,
    trigger_patterns: CtypesArray[bytes],
    num_trigger_patterns: int,
    trigger_tokens: CtypesArray[llama_token],
    num_trigger_tokens: int,
    /,
) -> llama_sampler_p:
    ...

llama_sampler_init_penalties(penalty_last_n, penalty_repeat, penalty_freq, penalty_present)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_penalties",
    [ctypes.c_int32, ctypes.c_float, ctypes.c_float, ctypes.c_float],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_penalties(
    penalty_last_n: int,
    penalty_repeat: float,
    penalty_freq: float,
    penalty_present: float,
    /,
) -> llama_sampler_p:
    ...

llama_sampler_init_dry(vocab, n_ctx_train, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, seq_breakers, num_breakers)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_dry",
    [
        llama_vocab_p_ctypes,
        ctypes.c_int32,
        ctypes.c_float,
        ctypes.c_float,
        ctypes.c_int32,
        ctypes.c_int32,
        ctypes.POINTER(ctypes.c_char_p),
        ctypes.c_size_t,
    ],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_dry(
    vocab: llama_vocab_p,
    n_ctx_train: int,
    dry_multiplier: float,
    dry_base: float,
    dry_allowed_length: int,
    dry_penalty_last_n: int,
    seq_breakers,
    num_breakers: int,
    /,
) -> llama_sampler_p:
    ...

llama_sampler_init_logit_bias(n_vocab, n_logit_bias, logit_bias)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_logit_bias",
    [ctypes.c_int32, ctypes.c_int32, llama_logit_bias_p],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_logit_bias(
    n_vocab: int, n_logit_bias: int, logit_bias: CtypesArray[llama_logit_bias], /
) -> llama_sampler_p:
    ...

llama_sampler_init_infill(vocab)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_init_infill",
    [llama_vocab_p_ctypes],
    llama_sampler_p_ctypes,
)
def llama_sampler_init_infill(vocab: llama_vocab_p, /) -> llama_sampler_p:
    ...

llama_sampler_get_seed(smpl)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_get_seed",
    [llama_sampler_p_ctypes],
    ctypes.c_uint32,
)
def llama_sampler_get_seed(smpl: llama_sampler_p, /) -> int:
    ...

llama_sampler_sample(smpl, ctx, idx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_sampler_sample",
    [llama_sampler_p_ctypes, llama_context_p_ctypes, ctypes.c_int32],
    llama_token,
)
def llama_sampler_sample(
    smpl: llama_sampler_p, ctx: llama_context_p, idx: int, /
) -> int:
    ...

llama_split_path(split_path, maxlen, path_prefix, split_no, split_count)

Build a split GGUF final path for this chunk.

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_split_path",
    [ctypes.c_char_p, ctypes.c_size_t, ctypes.c_char_p, ctypes.c_int, ctypes.c_int],
    ctypes.c_int,
)
def llama_split_path(
    split_path: bytes,
    maxlen: Union[ctypes.c_size_t, int],
    path_prefix: bytes,
    split_no: Union[ctypes.c_int, int],
    split_count: Union[ctypes.c_int, int],
    /,
) -> int:
    """Build a split GGUF final path for this chunk."""
    ...

llama_split_prefix(split_prefix, maxlen, split_path, split_no, split_count)

Extract the path prefix from the split_path if and only if the split_no and split_count match.

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_split_prefix",
    [ctypes.c_char_p, ctypes.c_size_t, ctypes.c_char_p, ctypes.c_int, ctypes.c_int],
    ctypes.c_int,
)
def llama_split_prefix(
    split_prefix: bytes,
    maxlen: Union[ctypes.c_size_t, int],
    split_path: bytes,
    split_no: Union[ctypes.c_int, int],
    split_count: Union[ctypes.c_int, int],
    /,
) -> int:
    """Extract the path prefix from the split_path if and only if the split_no and split_count match."""
    ...

llama_print_system_info()

Source code in llama_cpp/llama_cpp.py
@ctypes_function("llama_print_system_info", [], ctypes.c_char_p)
def llama_print_system_info() -> bytes:
    ...

llama_log_set(log_callback, user_data)

Set callback for all future logging events.

If this is not called, or NULL is supplied, everything is output on stderr.

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_log_set",
    [ctypes.c_void_p, ctypes.c_void_p],
    None,
)
def llama_log_set(
    log_callback: Optional[CtypesFuncPointer],
    user_data: ctypes.c_void_p,
    /,
):
    """Set callback for all future logging events.

    If this is not called, or NULL is supplied, everything is output on stderr."""
    ...

llama_perf_context_data

Bases: Structure

Source code in llama_cpp/llama_cpp.py
class llama_perf_context_data(ctypes.Structure):
    _fields_ = [
        ("t_start_ms", ctypes.c_double),
        ("t_load_ms", ctypes.c_double),
        ("t_p_eval_ms", ctypes.c_double),
        ("t_eval_ms", ctypes.c_double),
        ("n_p_eval", ctypes.c_int32),
        ("n_eval", ctypes.c_int32),
    ]

llama_perf_sampler_data

Bases: Structure

Source code in llama_cpp/llama_cpp.py
class llama_perf_sampler_data(ctypes.Structure):
    _fields_ = [
        ("t_sample_ms", ctypes.c_double),
        ("n_sample", ctypes.c_int32),
    ]

llama_perf_context(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_perf_context",
    [llama_context_p_ctypes],
    llama_perf_context_data,
)
def llama_perf_context(ctx: llama_context_p, /) -> llama_perf_context_data:
    ...

llama_perf_context_print(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_perf_context_print",
    [llama_context_p_ctypes],
    None,
)
def llama_perf_context_print(ctx: llama_context_p, /):
    ...

llama_perf_context_reset(ctx)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_perf_context_reset",
    [llama_context_p_ctypes],
    None,
)
def llama_perf_context_reset(ctx: llama_context_p, /):
    ...

llama_perf_sampler(chain)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_perf_sampler",
    [llama_sampler_p_ctypes],
    llama_perf_sampler_data,
)
def llama_perf_sampler(chain: llama_sampler_p, /) -> llama_perf_sampler_data:
    ...

llama_perf_sampler_print(chain)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_perf_sampler_print",
    [llama_sampler_p_ctypes],
    None,
)
def llama_perf_sampler_print(chain: llama_sampler_p, /):
    ...

llama_perf_sampler_reset(chain)

Source code in llama_cpp/llama_cpp.py
@ctypes_function(
    "llama_perf_sampler_reset",
    [llama_sampler_p_ctypes],
    None,
)
def llama_perf_sampler_reset(chain: llama_sampler_p, /):
    ...

LLAMA_MAX_DEVICES = _lib.llama_max_devices() module-attribute

LLAMA_DEFAULT_SEED = 4294967295 module-attribute

LLAMA_TOKEN_NULL = -1 module-attribute

LLAMA_FILE_MAGIC_GGLA = 1734831201 module-attribute

LLAMA_FILE_MAGIC_GGSN = 1734833006 module-attribute

LLAMA_FILE_MAGIC_GGSQ = 1734833009 module-attribute

LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN module-attribute

LLAMA_SESSION_VERSION = 9 module-attribute

LLAMA_STATE_SEQ_MAGIC = LLAMA_FILE_MAGIC_GGSQ module-attribute

LLAMA_STATE_SEQ_VERSION = 2 module-attribute

LLAMA_VOCAB_TYPE_NONE = 0 module-attribute

For models without vocab

LLAMA_VOCAB_TYPE_SPM = 1 module-attribute

LLaMA tokenizer based on byte-level BPE with byte fallback

LLAMA_VOCAB_TYPE_BPE = 2 module-attribute

GPT-2 tokenizer based on byte-level BPE

LLAMA_VOCAB_TYPE_WPM = 3 module-attribute

BERT tokenizer based on WordPiece

LLAMA_VOCAB_TYPE_UGM = 4 module-attribute

T5 tokenizer based on Unigram

LLAMA_VOCAB_TYPE_RWKV = 5 module-attribute

RWKV tokenizer based on greedy tokenization

LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0 module-attribute

LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1 module-attribute

LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2 module-attribute

LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3 module-attribute

LLAMA_VOCAB_PRE_TYPE_FALCON = 4 module-attribute

LLAMA_VOCAB_PRE_TYPE_MPT = 5 module-attribute

LLAMA_VOCAB_PRE_TYPE_STARCODER = 6 module-attribute

LLAMA_VOCAB_PRE_TYPE_GPT2 = 7 module-attribute

LLAMA_VOCAB_PRE_TYPE_REFACT = 8 module-attribute

LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9 module-attribute

LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10 module-attribute

LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11 module-attribute

LLAMA_VOCAB_PRE_TYPE_OLMO = 12 module-attribute

LLAMA_VOCAB_PRE_TYPE_DBRX = 13 module-attribute

LLAMA_VOCAB_PRE_TYPE_SMAUG = 14 module-attribute

LLAMA_VOCAB_PRE_TYPE_PORO = 15 module-attribute

LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16 module-attribute

LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17 module-attribute

LLAMA_VOCAB_PRE_TYPE_VIKING = 18 module-attribute

LLAMA_VOCAB_PRE_TYPE_JAIS = 19 module-attribute

LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20 module-attribute

LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21 module-attribute

LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22 module-attribute

LLAMA_VOCAB_PRE_TYPE_BLOOM = 23 module-attribute

LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24 module-attribute

LLAMA_VOCAB_PRE_TYPE_EXAONE = 25 module-attribute

LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26 module-attribute

LLAMA_VOCAB_PRE_TYPE_MINERVA = 27 module-attribute

LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28 module-attribute

LLAMA_VOCAB_PRE_TYPE_GPT4O = 29 module-attribute

LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 30 module-attribute

LLAMA_VOCAB_PRE_TYPE_TRILLION = 31 module-attribute

LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32 module-attribute

LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33 module-attribute

LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34 module-attribute

LLAMA_ROPE_TYPE_NONE = -1 module-attribute

LLAMA_ROPE_TYPE_NORM = 0 module-attribute

LLAMA_ROPE_TYPE_NEOX = 2 module-attribute

LLAMA_ROPE_TYPE_MROPE = 8 module-attribute

LLAMA_ROPE_TYPE_VISION = 24 module-attribute

LLAMA_TOKEN_TYPE_UNDEFINED = 0 module-attribute

LLAMA_TOKEN_TYPE_NORMAL = 1 module-attribute

LLAMA_TOKEN_TYPE_UNKNOWN = 2 module-attribute

LLAMA_TOKEN_TYPE_CONTROL = 3 module-attribute

LLAMA_TOKEN_TYPE_USER_DEFINED = 4 module-attribute

LLAMA_TOKEN_TYPE_UNUSED = 5 module-attribute

LLAMA_TOKEN_TYPE_BYTE = 6 module-attribute

LLAMA_TOKEN_ATTR_UNDEFINED = 0 module-attribute

LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0 module-attribute

LLAMA_TOKEN_ATTR_UNUSED = 1 << 1 module-attribute

LLAMA_TOKEN_ATTR_NORMAL = 1 << 2 module-attribute

LLAMA_TOKEN_ATTR_CONTROL = 1 << 3 module-attribute

LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4 module-attribute

LLAMA_TOKEN_ATTR_BYTE = 1 << 5 module-attribute

LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6 module-attribute

LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7 module-attribute

LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8 module-attribute

LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9 module-attribute

LLAMA_FTYPE_ALL_F32 = 0 module-attribute

LLAMA_FTYPE_MOSTLY_F16 = 1 module-attribute

LLAMA_FTYPE_MOSTLY_Q4_0 = 2 module-attribute

LLAMA_FTYPE_MOSTLY_Q4_1 = 3 module-attribute

LLAMA_FTYPE_MOSTLY_Q8_0 = 7 module-attribute

LLAMA_FTYPE_MOSTLY_Q5_0 = 8 module-attribute

LLAMA_FTYPE_MOSTLY_Q5_1 = 9 module-attribute

LLAMA_FTYPE_MOSTLY_Q2_K = 10 module-attribute

LLAMA_FTYPE_MOSTLY_Q3_K_S = 11 module-attribute

LLAMA_FTYPE_MOSTLY_Q3_K_M = 12 module-attribute

LLAMA_FTYPE_MOSTLY_Q3_K_L = 13 module-attribute

LLAMA_FTYPE_MOSTLY_Q4_K_S = 14 module-attribute

LLAMA_FTYPE_MOSTLY_Q4_K_M = 15 module-attribute

LLAMA_FTYPE_MOSTLY_Q5_K_S = 16 module-attribute

LLAMA_FTYPE_MOSTLY_Q5_K_M = 17 module-attribute

LLAMA_FTYPE_MOSTLY_Q6_K = 18 module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19 module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_XS = 20 module-attribute

LLAMA_FTYPE_MOSTLY_Q2_K_S = 21 module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_XS = 22 module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23 module-attribute

LLAMA_FTYPE_MOSTLY_IQ1_S = 24 module-attribute

LLAMA_FTYPE_MOSTLY_IQ4_NL = 25 module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_S = 26 module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_M = 27 module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_S = 28 module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_M = 29 module-attribute

LLAMA_FTYPE_MOSTLY_IQ4_XS = 30 module-attribute

LLAMA_FTYPE_MOSTLY_IQ1_M = 31 module-attribute

LLAMA_FTYPE_MOSTLY_BF16 = 32 module-attribute

LLAMA_FTYPE_MOSTLY_TQ1_0 = 36 module-attribute

LLAMA_FTYPE_MOSTLY_TQ2_0 = 37 module-attribute

LLAMA_FTYPE_GUESSED = 1024 module-attribute

LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1 module-attribute

LLAMA_ROPE_SCALING_TYPE_NONE = 0 module-attribute

LLAMA_ROPE_SCALING_TYPE_LINEAR = 1 module-attribute

LLAMA_ROPE_SCALING_TYPE_YARN = 2 module-attribute

LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3 module-attribute

LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN module-attribute

LLAMA_POOLING_TYPE_UNSPECIFIED = -1 module-attribute

LLAMA_POOLING_TYPE_NONE = 0 module-attribute

LLAMA_POOLING_TYPE_MEAN = 1 module-attribute

LLAMA_POOLING_TYPE_CLS = 2 module-attribute

LLAMA_POOLING_TYPE_LAST = 3 module-attribute

LLAMA_POOLING_TYPE_RANK = 4 module-attribute

LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1 module-attribute

LLAMA_ATTENTION_TYPE_CAUSAL = 0 module-attribute

LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1 module-attribute

LLAMA_SPLIT_MODE_NONE = 0 module-attribute

LLAMA_SPLIT_MODE_LAYER = 1 module-attribute

LLAMA_SPLIT_MODE_ROW = 2 module-attribute

LLAMA_KV_OVERRIDE_TYPE_INT = 0 module-attribute

LLAMA_KV_OVERRIDE_TYPE_FLOAT = 1 module-attribute

LLAMA_KV_OVERRIDE_TYPE_BOOL = 2 module-attribute

LLAMA_KV_OVERRIDE_TYPE_STR = 3 module-attribute

Misc

llama_cpp.llama_types

Types and request signatures for OpenAI compatibility

NOTE: These types may change to match the OpenAI OpenAPI specification.

Based on the OpenAI OpenAPI specification: https://github.com/openai/openai-openapi/blob/master/openapi.yaml

JsonType = Union[None, int, str, bool, List[Any], Dict[str, Any]] module-attribute

EmbeddingUsage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class EmbeddingUsage(TypedDict):
    prompt_tokens: int
    total_tokens: int
prompt_tokens instance-attribute
total_tokens instance-attribute

Embedding

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class Embedding(TypedDict):
    index: int
    object: str
    embedding: Union[List[float], List[List[float]]]
index instance-attribute
object instance-attribute
embedding instance-attribute

CreateEmbeddingResponse

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class CreateEmbeddingResponse(TypedDict):
    object: Literal["list"]
    model: str
    data: List[Embedding]
    usage: EmbeddingUsage
object instance-attribute
model instance-attribute
data instance-attribute
usage instance-attribute

CompletionLogprobs

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class CompletionLogprobs(TypedDict):
    text_offset: List[int]
    token_logprobs: List[Optional[float]]
    tokens: List[str]
    top_logprobs: List[Optional[Dict[str, float]]]
text_offset instance-attribute
token_logprobs instance-attribute
tokens instance-attribute
top_logprobs instance-attribute

CompletionChoice

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class CompletionChoice(TypedDict):
    text: str
    index: int
    logprobs: Optional[CompletionLogprobs]
    finish_reason: Optional[Literal["stop", "length"]]
text instance-attribute
index instance-attribute
logprobs instance-attribute
finish_reason instance-attribute

CompletionUsage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class CompletionUsage(TypedDict):
    prompt_tokens: int
    completion_tokens: int
    total_tokens: int
prompt_tokens instance-attribute
completion_tokens instance-attribute
total_tokens instance-attribute

CreateCompletionResponse

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class CreateCompletionResponse(TypedDict):
    id: str
    object: Literal["text_completion"]
    created: int
    model: str
    choices: List[CompletionChoice]
    usage: NotRequired[CompletionUsage]
id instance-attribute
object instance-attribute
created instance-attribute
model instance-attribute
choices instance-attribute
usage instance-attribute

ChatCompletionResponseFunctionCall

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionResponseFunctionCall(TypedDict):
    name: str
    arguments: str
name instance-attribute
arguments instance-attribute

ChatCompletionResponseMessage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionResponseMessage(TypedDict):
    content: Optional[str]
    tool_calls: NotRequired["ChatCompletionMessageToolCalls"]
    role: Literal["assistant", "function"]  # NOTE: "function" may be incorrect here
    function_call: NotRequired[ChatCompletionResponseFunctionCall]  # DEPRECATED
content instance-attribute
tool_calls instance-attribute
role instance-attribute
function_call instance-attribute

ChatCompletionFunction

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionFunction(TypedDict):
    name: str
    description: NotRequired[str]
    parameters: Dict[str, JsonType]  # TODO: make this more specific
name instance-attribute
description instance-attribute
parameters instance-attribute

ChatCompletionTopLogprobToken

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionTopLogprobToken(TypedDict):
    token: str
    logprob: float
    bytes: Optional[List[int]]
token instance-attribute
logprob instance-attribute
bytes instance-attribute

ChatCompletionLogprobToken

Bases: ChatCompletionTopLogprobToken

Source code in llama_cpp/llama_types.py
class ChatCompletionLogprobToken(ChatCompletionTopLogprobToken):
    token: str
    logprob: float
    bytes: Optional[List[int]]
    top_logprobs: List[ChatCompletionTopLogprobToken]
token instance-attribute
logprob instance-attribute
bytes instance-attribute
top_logprobs instance-attribute

ChatCompletionLogprobs

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionLogprobs(TypedDict):
    content: Optional[List[ChatCompletionLogprobToken]]
    refusal: Optional[List[ChatCompletionLogprobToken]]
content instance-attribute
refusal instance-attribute

ChatCompletionResponseChoice

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionResponseChoice(TypedDict):
    index: int
    message: "ChatCompletionResponseMessage"
    logprobs: Optional[ChatCompletionLogprobs]
    finish_reason: Optional[str]
index instance-attribute
message instance-attribute
logprobs instance-attribute
finish_reason instance-attribute

CreateChatCompletionResponse

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class CreateChatCompletionResponse(TypedDict):
    id: str
    object: Literal["chat.completion"]
    created: int
    model: str
    choices: List["ChatCompletionResponseChoice"]
    usage: CompletionUsage
id instance-attribute
object instance-attribute
created instance-attribute
model instance-attribute
choices instance-attribute
usage instance-attribute

ChatCompletionMessageToolCallChunkFunction

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionMessageToolCallChunkFunction(TypedDict):
    name: Optional[str]
    arguments: str
name instance-attribute
arguments instance-attribute

ChatCompletionMessageToolCallChunk

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionMessageToolCallChunk(TypedDict):
    index: int
    id: NotRequired[str]
    type: Literal["function"]
    function: ChatCompletionMessageToolCallChunkFunction
index instance-attribute
id instance-attribute
type instance-attribute
function instance-attribute

ChatCompletionStreamResponseDeltaEmpty

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionStreamResponseDeltaEmpty(TypedDict):
    pass

ChatCompletionStreamResponseDeltaFunctionCall

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionStreamResponseDeltaFunctionCall(TypedDict):
    name: str
    arguments: str
name instance-attribute
arguments instance-attribute

ChatCompletionStreamResponseDelta

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionStreamResponseDelta(TypedDict):
    content: NotRequired[Optional[str]]
    function_call: NotRequired[
        Optional[ChatCompletionStreamResponseDeltaFunctionCall]
    ]  # DEPRECATED
    tool_calls: NotRequired[Optional[List[ChatCompletionMessageToolCallChunk]]]
    role: NotRequired[Optional[Literal["system", "user", "assistant", "tool"]]]
content instance-attribute
function_call instance-attribute
tool_calls instance-attribute
role instance-attribute

ChatCompletionStreamResponseChoice

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionStreamResponseChoice(TypedDict):
    index: int
    delta: Union[
        ChatCompletionStreamResponseDelta, ChatCompletionStreamResponseDeltaEmpty
    ]
    finish_reason: Optional[Literal["stop", "length", "tool_calls", "function_call"]]
    logprobs: NotRequired[Optional[ChatCompletionLogprobs]]
index instance-attribute
delta instance-attribute
finish_reason instance-attribute
logprobs instance-attribute

CreateChatCompletionStreamResponse

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class CreateChatCompletionStreamResponse(TypedDict):
    id: str
    model: str
    object: Literal["chat.completion.chunk"]
    created: int
    choices: List[ChatCompletionStreamResponseChoice]
id instance-attribute
model instance-attribute
object instance-attribute
created instance-attribute
choices instance-attribute

ChatCompletionFunctions

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionFunctions(TypedDict):
    name: str
    description: NotRequired[str]
    parameters: Dict[str, JsonType]  # TODO: make this more specific
name instance-attribute
description instance-attribute
parameters instance-attribute

ChatCompletionFunctionCallOption

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionFunctionCallOption(TypedDict):
    name: str
name instance-attribute

ChatCompletionRequestResponseFormat

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestResponseFormat(TypedDict):
    type: Literal["text", "json_object"]
    schema: NotRequired[
        JsonType
    ]  # https://docs.endpoints.anyscale.com/guides/json_mode/
type instance-attribute
schema instance-attribute

ChatCompletionRequestMessageContentPartText

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestMessageContentPartText(TypedDict):
    type: Literal["text"]
    text: str
type instance-attribute
text instance-attribute

ChatCompletionRequestMessageContentPartImageImageUrl

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestMessageContentPartImageImageUrl(TypedDict):
    url: str
    detail: NotRequired[Literal["auto", "low", "high"]]
url instance-attribute
detail instance-attribute

ChatCompletionRequestMessageContentPartImage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestMessageContentPartImage(TypedDict):
    type: Literal["image_url"]
    image_url: Union[str, ChatCompletionRequestMessageContentPartImageImageUrl]
type instance-attribute
image_url instance-attribute

ChatCompletionRequestMessageContentPart = Union[ChatCompletionRequestMessageContentPartText, ChatCompletionRequestMessageContentPartImage] module-attribute

ChatCompletionRequestSystemMessage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestSystemMessage(TypedDict):
    role: Literal["system"]
    content: Optional[str]
role instance-attribute
content instance-attribute

ChatCompletionRequestUserMessage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestUserMessage(TypedDict):
    role: Literal["user"]
    content: Optional[Union[str, List[ChatCompletionRequestMessageContentPart]]]
role instance-attribute
content instance-attribute

ChatCompletionMessageToolCallFunction

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionMessageToolCallFunction(TypedDict):
    name: str
    arguments: str
name instance-attribute
arguments instance-attribute

ChatCompletionMessageToolCall

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionMessageToolCall(TypedDict):
    id: str
    type: Literal["function"]
    function: ChatCompletionMessageToolCallFunction
id instance-attribute
type instance-attribute
function instance-attribute

ChatCompletionMessageToolCalls = List[ChatCompletionMessageToolCall] module-attribute

ChatCompletionRequestAssistantMessageFunctionCall

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestAssistantMessageFunctionCall(TypedDict):
    name: str
    arguments: str
name instance-attribute
arguments instance-attribute

ChatCompletionRequestAssistantMessage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestAssistantMessage(TypedDict):
    role: Literal["assistant"]
    content: NotRequired[str]
    tool_calls: NotRequired[ChatCompletionMessageToolCalls]
    function_call: NotRequired[
        ChatCompletionRequestAssistantMessageFunctionCall
    ]  # DEPRECATED
role instance-attribute
content instance-attribute
tool_calls instance-attribute
function_call instance-attribute

ChatCompletionRequestToolMessage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestToolMessage(TypedDict):
    role: Literal["tool"]
    content: Optional[str]
    tool_call_id: str
role instance-attribute
content instance-attribute
tool_call_id instance-attribute

ChatCompletionRequestFunctionMessage

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestFunctionMessage(TypedDict):
    role: Literal["function"]
    content: Optional[str]
    name: str
role instance-attribute
content instance-attribute
name instance-attribute

ChatCompletionRequestMessage = Union[ChatCompletionRequestSystemMessage, ChatCompletionRequestUserMessage, ChatCompletionRequestAssistantMessage, ChatCompletionRequestUserMessage, ChatCompletionRequestToolMessage, ChatCompletionRequestFunctionMessage] module-attribute

ChatCompletionRequestFunctionCallOption

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionRequestFunctionCallOption(TypedDict):
    name: str
name instance-attribute

ChatCompletionRequestFunctionCall = Union[Literal['none', 'auto'], ChatCompletionRequestFunctionCallOption] module-attribute

ChatCompletionFunctionParameters = Dict[str, JsonType] module-attribute

ChatCompletionToolFunction

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionToolFunction(TypedDict):
    name: str
    description: NotRequired[str]
    parameters: ChatCompletionFunctionParameters
name instance-attribute
description instance-attribute
parameters instance-attribute

ChatCompletionTool

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionTool(TypedDict):
    type: Literal["function"]
    function: ChatCompletionToolFunction
type instance-attribute
function instance-attribute

ChatCompletionNamedToolChoiceFunction

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionNamedToolChoiceFunction(TypedDict):
    name: str
name instance-attribute

ChatCompletionNamedToolChoice

Bases: TypedDict

Source code in llama_cpp/llama_types.py
class ChatCompletionNamedToolChoice(TypedDict):
    type: Literal["function"]
    function: ChatCompletionNamedToolChoiceFunction
type instance-attribute
function instance-attribute

ChatCompletionToolChoiceOption = Union[Literal['none', 'auto', 'required'], ChatCompletionNamedToolChoice] module-attribute

EmbeddingData = Embedding module-attribute

CompletionChunk = CreateCompletionResponse module-attribute

Completion = CreateCompletionResponse module-attribute

CreateCompletionStreamResponse = CreateCompletionResponse module-attribute

ChatCompletionMessage = ChatCompletionResponseMessage module-attribute

ChatCompletionChoice = ChatCompletionResponseChoice module-attribute

ChatCompletion = CreateChatCompletionResponse module-attribute

ChatCompletionChunkDeltaEmpty = ChatCompletionStreamResponseDeltaEmpty module-attribute

ChatCompletionChunkChoice = ChatCompletionStreamResponseChoice module-attribute

ChatCompletionChunkDelta = ChatCompletionStreamResponseDelta module-attribute

ChatCompletionChunk = CreateChatCompletionStreamResponse module-attribute

ChatCompletionStreamResponse = CreateChatCompletionStreamResponse module-attribute

ChatCompletionResponseFunction = ChatCompletionFunction module-attribute

ChatCompletionFunctionCall = ChatCompletionResponseFunctionCall module-attribute