Abstract
As beginning students of mathematics, we learn successively about various kinds of numbers. First come the natural numbers:
N = {1, 2, 3, …}.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Y. André: G-Functions and Geometry. Aspects of Mathematics 13. Vieweg, Braunschweig 1989
A. Beilinson: Higher regulators of modular curves. In: Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Contemp. Math. 55. Amer. Math. Soc., Providence 1986, pp. 1–34
F. Beukers: A note on the irrationality of f (2) and f (3). Bull. London Math. Soc. 11 (1979), 268–272
F. Beukers: Algebraic values of G-functions. J. Reine Angew. Math. 434 (1993), 45–65
F. Beukers, E. Calabi and J. Kolk: Sums of generalized harmonic series and volumes. Nieuw Arch. Wisk. 11 (1993), 217–224
F. Beukers and G. Heckman: Monodromy for the hypergeometric function n F n-1. Inv. math. 95 (1989), 325–354
F. Beukers and J. Wolfart: Algebraic values of hypergeometric functions. In: New Advances in Transcendence Theory (ed. A. Baker). Cambridge University Press (1988), 68–81
S. Bloch: A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture. Inv. math. 58 (1980), 65–76
S. Bloch and H. Esnault: Gauss-Manin determinant connections and periods for irregular connections. Preprint, Essen 1999
A. Borel: Cohomologie de SL n et valeurs de fonctions zêta aux points entiers. Ann. Scuola Norm. Sup. Pisa 4 (1977), 613–636
D. W. Boyd: Mahler’s measure and special values of L-functions. Experiment. Math. 7 (1998), 37–82
P. Colmez: Périodes des variétés abéliennes à multiplication complexe. Ann. Math. 138 (1993), 625–683
P. Deligne: Valeurs de fonctions L et périodes d’intégrales. In: Automorphic forms, Representations, and L-functions, Proc. Symp. Pure Math. 33. Amer. Math. Soc., Providence 1979, pp. 313–346
C. Deninger and A. Scholl: The Beilinson conjectures. In: L-functions and Arithmetic, London Math. Soc. Lecture Notes 153 (eds. J. Coates and M. J. Taylor). Cambridge University Press, Cambridge 1991, pp. 173–209
B. Gross and D. Zagier: Heegner points and derivatives of L-series. Inv. Math. 85 (1986), 225–320
B. Gross, W. Kohnen and D. Zagier: Heegner points and derivatives of L-series. II. Math. Annalen 278 (1987), 497–562
W. Hulsbergen: Conjectures in Arithmetic Algebraic Geometry. Aspects of Mathematics 18. Vieweg, Braunschweig 1992
U. Jannsen, S. Kleiman, J.-P. Serre (eds.): Motives. Proc. Symp. Pure Math. 55. AMS, Providence 1994
J.-P. Jouanolou: Une suite exacte de Mayer-Vietoris en K-theorie algebrique. In: Algebraic K-theory. I, Lecture Notes in Math. 341. Springer, Berlin Heidelberg 1973, pp. 293–316
F. Rodriguez Villegas: Modular Mahler Measures I. In: Topics in Number Theory (University Park, PA, 1997), Math. Appl. 467. Kluwer, Dordrecht 1999, pp. 17–48
A. Scholl: Remarks on special values of L-functions. In: L-functions and Arithmetic, London Math. Soc. Lecture Notes 153 (eds. J. Coates and M. J. Taylor). Cambridge University Press, Cambridge 1991, pp. 373–392
D. Shanks: Incredible identities. Fibonacci Quart. 12 (1974), 271, 280
D. Shanks: Dihedral quartic approximations and series for π. J. Numb. Th. 14 (1982), 397–423
H. Stark: Values of L-functions at S = 1, 1–IV. Adv. Math. 7(1971), 301–343; 17 (1975), 60–92; 22 (1976), 64–84; 35 (1980), 197–235
J. Tate: Les conjectures de Stark sur les fonctions L d’Artin en s = 0. Prog, in Math. 47. Birkhäuser, Boston 1984
A. Weil: Elliptic functions acccording to Eisenstein and Kronecker. Ergebnisse der Math. 88. Springer, Berlin Heidelberg 1976
N. J. Wildberger: Real fish, real numbers, real jobs. The Mathematical Intelligencer 21 (1999), 4–7
H. Yoshida: On absolute CM-periods. In: Automorphic Forms, Automorphic Representations and Arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math. 66, Amer. Math. Soc., Providence 1999, pp. 221–278
H. Yoshida: On absolute CM-periods. II. Amer. J. Math. 120 (1998), 1199–1236
D. Zagier: Poly logarithms, Dedekind zeta functions and the algebraic K-theory of fields. In: Arithmetic Algebraic Geometry, Progr. Math. 89. Birkhäuser, Boston 1991, pp. 391–30
D. Zagier: Some strange 3-adic identities (Solution to Problem 6625). Amer. Math. Monthly 99 (1992), 66–69
D. Zagier: Values of zeta functions and their applications. In: First European Congress of Mathematics, Volume II, Progress in Math. 120. Birkhäuser, Basel 1994, pp.497–512
D. Zagier and H. Gangl: Classical and elliptic polylogàrithms and special values of L-series. In: The Arithmetic and Geometry of Algebraic Cycles, Nato Science Series C 548. Kluwer, Dordrecht 2000, pp. 561–615
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kontsevich, M., Zagier, D. (2001). Periods. In: Engquist, B., Schmid, W. (eds) Mathematics Unlimited — 2001 and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56478-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-56478-9_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-63114-6
Online ISBN: 978-3-642-56478-9
eBook Packages: Springer Book Archive