Skip to main content

Introduction

  • Chapter
  • First Online:
New Paradigms in Flow Battery Modelling

Abstract

Redox flow batteries (RFBs) were designed for large-and medium-scale energy storage and have historically been used as backup and standalone power systems. With renewable energy generation taking on an increasing share of electrical power production, the role of RFBs is expected to grow in importance. Indeed, they may well become critical to maintaining a continual supply of electricity to homes and businesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
eBook
USD 149.00
Price excludes VAT (Canada)
Softcover Book
USD 199.99
Price excludes VAT (Canada)
Hardcover Book
USD 199.99
Price excludes VAT (Canada)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.Z.A. Shaqsi, K. Sopian, A. Al-Hinai, Review of energy storage services, applications, limitations, and benefits. Energy Rep. 6, 288–306 (2020)

    Article  Google Scholar 

  2. I. Dincer, M.A. Rosen, Thermal Energy Storage: Systems and Applications. (John Wiley & Sons, 2021)

    Google Scholar 

  3. M.A. Miller, J. Petrasch, K. Randhir, N. Rahmatian, J. Klausner, Chemical energy storage, in Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems, pp. 249–292 (2021)

    Google Scholar 

  4. P. Novak, K. Miller, K.S.V. Santhanam, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 272 (1997)

    Google Scholar 

  5. M. Uddin, M.F. Romlie, M.F. Abdullah, S. Abd Halim, T.C. Kwang, A review on peak load shaving strategies. Renew. Sustain. Energy Rev. 82, 3323–3332, (2018)

    Google Scholar 

  6. K.M. Tan, T.S. Babu, V.K. Ramachandaramurthy, P. Kasinathan, S.G. Solanki, S.K. Raveendran, Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage. 39, 102591 (2021)

    Article  Google Scholar 

  7. S. Revankar, H. Bindra, Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy (Academic Press, 2018)

    Google Scholar 

  8. M. Deymi-Dashtebayaz, A. Ebrahimi-Moghadam, S.I. Pishbin, M. Pourramezan, Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions. Energy. 167, 235–245 (2019)

    Google Scholar 

  9. M. Thema, F. Bauer, M. Sterner, Power-to-gas: electrolysis and methanation status review. Renew. Sustain. Energy Rev. 112, 775–787 (2019)

    Article  CAS  Google Scholar 

  10. Ewelina Jankowska, Ashish K. Sahu, Piotr Oleskowicz-Popiel, Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew. Sustain. Energy Rev. 75, 692–709 (2017)

    Article  CAS  Google Scholar 

  11. S.S. Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis: a review. Mater. Sci. Energy Technol. 2(3), 442–454 (2019)

    Google Scholar 

  12. J. Davies, F. Dolci, D. Klassek-Bajorek, R. Ortiz Cebolla, E. Weidner Ronnefeld, Current status of chemical energy storage technologies, EUR 30159 EN, publications office of the European union. Technical report (Luxembourg, 2020)

    Google Scholar 

  13. T.M. Gur, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environ. Sci. 11(10), 2696–2767 (2018)

    Article  Google Scholar 

  14. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009)

    Google Scholar 

  15. Heng Tang, Junjun Yao, Yirong Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11(14), 2003994 (2021)

    Article  CAS  Google Scholar 

  16. P. Mukherjee, V.V. Rao, Design and development of high temperature superconducting magnetic energy storage for power applications-a review. Phys. C Supercond. Appl. 563, 67–73 (2019)

    Google Scholar 

  17. E. Borri, A. Tafone, G. Comodi, A. Romagnoli, L.F. Cabeza, Compressed air energy storage: an overview of research trends and gaps through a bibliometric analysis. Energ. 15, 7692 (2022)

    Google Scholar 

  18. A. Olympios, J. McTigue, P.F. Antunez, A. Tafone, A. Romagnoli, Y. Li, Y. Ding, W.-D. Steinmann, L. Wang, H. Chen et al., Progress and prospects of thermo-mechanical energy storage. a critical review. Prog. Energy. 3, 022001 (2021)

    Google Scholar 

  19. M. Budt, D. Wolf, R. Span, J.A. Yan, Review on compressed air energy storage: basic principles, past milestones and recent developments. Appl. Energy. 170, 250–268 (2016)

    Article  Google Scholar 

  20. M. Aneke, M. Wang, Energy storage technologies and real life applications. state of the art review. Appl. Energy. 179, 350–377 (2016)

    Google Scholar 

  21. grid-connected advanced compressed air energy storage plant comes online in Ontario. energy storage news (2019)

    Google Scholar 

  22. L. Blain, China turns on the world’s largest compressed air energy storage plant. New Atlas, October 2022. Accessed 10 Jan 2023

    Google Scholar 

  23. Faramarz Faraji, Abbas Majazi, Kamal Al-Haddad, A comprehensive review of flywheel energy storage system technology. Renew. Sustain. Energy Rev. 67, 477–490 (2017)

    Article  Google Scholar 

  24. A.V. Filatov, E.H. Maslen, Passive magnetic bearing for flywheel energy storage systems. IEEE Trans. Magn. 37(6), 3913–3924 (2001)

    Article  Google Scholar 

  25. Stephentown, New York—beacon power

    Google Scholar 

  26. Canada’s first grid storage system launches in Ontario—PV-Tech storage. PV-Tech storage

    Google Scholar 

  27. Guruprasad Alva, Yaxue Lin, Guiyin Fang, An overview of thermal energy storage systems. Energy. 144, 341–378 (2018)

    Article  Google Scholar 

  28. P. Denholm, J.C. King, C.F. Kutcher, P.P. Wilson, Decarbonizing the electric sector: combining renewable and nuclear energy using thermal storage. Energy Policy. 44, 301–311 (2012)

    Article  Google Scholar 

  29. Ugo Pelay et al., Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 79, 82–100 (2017)

    Article  Google Scholar 

  30. A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. part 1: concepts, materials and modellization. Renew. Sustain. Energy Rev. 14(1), 31–55 (2010)

    Google Scholar 

  31. J. Pacio, A. Fritsch, C. Singer, R. Uhlig, Liquid metals as efficient coolants for high-intensity point-focus receivers: implications to the design and performance of next-generation CSP systems. Energy Procedia. 49, 647–655 (2014)

    Article  CAS  Google Scholar 

  32. B. Cardenas, N. Leon, High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques. Renew. Sustain. Energy Rev. 27, 724–737 (2013)

    Article  CAS  Google Scholar 

  33. Guruprasad Alva et al., Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 68, 693–706 (2017)

    Article  Google Scholar 

  34. J.S. Prasad, P. Muthukumar, F. Desai, D.N. Basu, M.M. Rahman, A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energy. 254(11373), 3 (2019)

    Google Scholar 

  35. K. Edem N’tsoukpoe et al., A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 13(9), 2385–2396 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akeel A. Shah .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

A. Shah, A., Leung, P., Xu, Q., Sui, PC., Xing, W. (2023). Introduction. In: New Paradigms in Flow Battery Modelling. Engineering Applications of Computational Methods, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-99-2524-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2524-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2523-0

  • Online ISBN: 978-981-99-2524-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics