Skip to main content

Contributions to a Sustainable Production of Food of Animal Origin

  • Chapter
  • First Online:
Sustainable Agriculture towards Food Security
  • 1942 Accesses

  • 4 Citations

Abstract

Sustainability in human food chain characterizes the global balance/equilibrium between efficient use of limited natural resources (such as arable land, water, fuel etc.), emissions (e.g. carbon dioxide, methane, laughing gas etc.) and socio-economic and ethical aspects as base for the existence of future generations.

Sustainability in the production of food of animal origin or edible protein means an efficient production. Such calculations should not only include the food chain links “feed – animal – food of animal origin” but the whole food chain. A system has the highest efficiency or the largest sustainability if it is impossible to improve one parameter without deterioration of one or more other parameters.

After introduction, the authors define the term sustainability and deduce the objective of the review paper. Protein of animal origin is the main point of the paper, and it is in the focus of the following sections. Resource inputs in form of edible land, water, fuel, etc. and outputs in form of animal yields (e.g. milk, eggs, meat, fish, etc.) and emissions are described, and reduction potentials for emissions are measured. Some potentials to improve sustainability of production of food of animal origin, such as feeds, which do not compete with human nutrition, plant and animal breeding, potentials of other protein sources and alternatives of animal products in nutrition including reduction of feed/food losses are discussed in the paper.

More complex calculations under consideration of parameters of efficient use of limited resources and reduction of emissions seem to be helpful to find out a certain optimum in production of food of animal origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aerts S (2012) Agriculture’s 6 F’s and the need for more intensive agriculture. In: Potthast T, Meisch S (eds) Climate change and sustainable development. Wageningen Acad Publ, Wageningen, pp 192–195

    Chapter  Google Scholar 

  • Aiking H (2011) Future protein supply. Trends Food Sci Tech 22:112–120

    Article  CAS  Google Scholar 

  • Aiking H (2014) Protein production: planet, profit, plus people. Am J Clin Nutr 100(Suppl. 1):4835–4895

    Google Scholar 

  • Andersen G (2011) The little Souci/Fachmann/Kraut: Food table for the practise, 5th edn. Deutsche Forschungsanstalt für Lebensmittelchemie/Wissenschaftliche Verlagsgesellschaft mbH, Freising/Stuttgart, 483 p

    Google Scholar 

  • Andersen MM, Landes X, Xiang W, Anyshchenko A, Falhof J, Osterberg JT, Olsen LI, Edenbrandt AK, Vedel SE, Thorson BJ, Sandoe P, Gamborg C, Kappel K, Palmgren MG (2015) Feasibility of new breeding techniques for organic farming. Trends Plant Sci 20:426–434

    Article  CAS  PubMed  Google Scholar 

  • Avadi A, Fréon P (2013) Life cycle assessment of fisheries: a review for fisheries scientists and managers. Fish Res 143:21–38

    Article  Google Scholar 

  • Bannink A, France J, Lopez S, Gerrits WJJ, Kebreab E, Tamminga S, Dijkstra J (2008) Modelling the implication of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim Feed Sci Technol 143:3–26

    Article  Google Scholar 

  • Barnett J, Russell J (2010) Energy use on dairy farms. Environmental issues at dairy farm level. Bull Int Dairy Fed 443:23–32

    Google Scholar 

  • Baroni L, Cenci L, Tettamanti M, Berati M (2007) Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur J Clin Nutr 61:279–286

    Article  CAS  PubMed  Google Scholar 

  • Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the Prot-Age Study Group. J Am Med Dir Assoc 14:542–559

    Article  PubMed  Google Scholar 

  • Beauchemin KA, McAllister TA, McGinn SM (2009) Dietary mitigation of enteric methane from cattle. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 4(035):1–18

    Google Scholar 

  • Bekatorou A, Psarianos C, Koutinas AA (2006) Production of food grade yeasts. Food Technol Biotechnol 44:407–415

    Google Scholar 

  • Benjaminson MA, Gilchriest JA, Lorenz M (2002) In vitro edible muscle protein system. MPPS Stage 1 (fish). Acta Astronaut 51:879–889

    Article  CAS  PubMed  Google Scholar 

  • Bessou C, Mary B, Leonhard J, Roussel M, Grehan E, Gabrielle B (2010) Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur J Soil Sci 61:348–363

    Article  CAS  Google Scholar 

  • Bockisch F-J, Ahlgrimm H-J, Böhme H, Bramm A, Dämmgen U, Flachowsky G (2000) Bewertung von Verfahren der ökologischen und konventionellen landwirtschaftlichen Produktion im Hinblick auf Energieeinsatz und bestimmte Schadgasemissionen. Landbauforschung Völkenrode, Sonderheft 211, 206 p

    Google Scholar 

  • Boonen R, Aerts S, De Tavernier L (2012) Which sustainability suits you? In: Potthast T, Meisch S (eds) Climate change and sustainable development. Wageningen Acad. Publ, Wageningen, pp 43–48

    Chapter  Google Scholar 

  • Bruinsma J (2009) The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? FAO Expert meeting on how to feed the world in 2050? June 2009. FAO, Rome, p 33

    Google Scholar 

  • Brundtland GH (1987) Report of the World Commission on Environment and Development: Our Common Future. UN Documents: Gathering a Body of Global Agreements; Annex to document A/42/427

    Google Scholar 

  • Bukkens SGF (1997) The nutritional value of edible insects. Ecol Food Nutr 36:287–319

    Article  Google Scholar 

  • Caffrey KR and Veal MW (2013) Conducting an agricultural life cycle assessment: challenges and perspectives. Sci World J 2013, 472431, 13 p

    Google Scholar 

  • Capper JL, Berger L, Brashears MM (2013) Animal feed vs. human food: challenges and opportunities in sustaining animal agriculture toward 20150. Council. Agric Sci Technol 53:1–16

    Google Scholar 

  • Cassidy ES, West PC, Gerber JS, Foley JA (2013) Redefining agricultural yields: from tonnes to people nourished per hectare. Environ Res Lett 8:034015. https://doi.org/10.1088/1748-9326/8/3/034015

    Article  Google Scholar 

  • Casabona CMR, Epifanio LES, Cirion AE (2010) Global food security: ethical and legal challenges. Wageningen Academic Publishers, Wageningen, 532 p

    Book  Google Scholar 

  • Day L (2013) Proteins from land plants – potential resources for human nutrition and food security. Trends Food Sci Tech 32:25–42

    Article  CAS  Google Scholar 

  • De Alvarenga RAF, Silva Junior VP d, Soares SR, de Alvarenga RAF, da Silva Junior VP (2012) Comparison of the ecological footprint and a life cycle impact assessment method for a case study on Brazilian broiler feed production. J Clean Prod 28:25–32

    Article  Google Scholar 

  • De Vries M, de Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11

    Article  Google Scholar 

  • Dodson MV, Vierck JL, Hossner KL, Byrne K, McNamara JP (1997) The development and utility of a defined muscle and fat co-culture system. Tissue Cell 29:517–524

    Article  CAS  PubMed  Google Scholar 

  • EFSA (European Food Safety Aurhority) (2015) Risk profile related to production and consumption of insects as food and feed. EFSA J 13 (10):4257, 60 p

    Google Scholar 

  • Ellis JL, Bannink A, France J, Kebreab J, Dijkstra J (2010) Evaluation of enteric methane prediction equation for dairy cows used in the whole farm model. Glob Chang Biol 16:3246–3256

    Article  Google Scholar 

  • Enzing C, Ploeg M, Barbosan M, Sijtsma L, Vigani M, Parisi C, Rodriguez Cerezo E (2016) Microalgae-based products for the food and feed sector: an outlook for Europe, Scientific and Technical Research Papers, JRC Scientific and Polica Reports. EU Science Hub, Brussels, 75 p

    Google Scholar 

  • Ertl P, Klocker H, Hörtenhuber S, Knaus W, Zollitsch W (2015) The net contribution of dairy production to human food supply: the case of Austrian dairy farms. Agric Syst 137:119–125

    Article  Google Scholar 

  • FAO (Food and Agriculture Organisation of the United Nations) (2006) Livestock’s long shadow. Environmental issues and options. FAO, Rome, 406 p

    Google Scholar 

  • FAO (2009) How to feed the world in 2050. FAO, Rome, 120 p

    Google Scholar 

  • FAO (2011) Global food losses and food waste. FAO, Rome, 30 p

    Google Scholar 

  • FAO (2013) FAO statistical yearbook, 2013; World food and agriculture. FAO, Rome, 289 p

    Google Scholar 

  • FAO (2015) Estimating Greenhouse gas emissions in agriculture. A manual to address data requirements for developing countries. FAO, Rome, 180 p

    Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges PC, Knauf VC, Lobell D, Mazur BJ, Molden D, Reynolds MP, Ronald PC, Rosengrant MW, Sanches PA, Vonshak A, Zhu JK (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finke MD (2002) Complete nutrient composition of selected invertebrates commonly fed to insectivores. Zoo Biol 21:269–285

    Article  CAS  Google Scholar 

  • Fischer T, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increase continue to feed the world? Australian Centre for International Agricultural Research, Canberra, 634 p

    Google Scholar 

  • Flachowsky G (1987) Straw as feed (in German). Deutscher Landwirtschaftsverlag, Berlin, 255 p

    Google Scholar 

  • Flachowsky G (2002) Efficiency of energy and nutrient use in the production of edible protein of animal origin. J Appl Anim Res 22:1–24

    Article  Google Scholar 

  • Flachowsky G (2013) Animal nutrition with transgenic plants. CAB International, Wallingford, 234 p

    Book  Google Scholar 

  • Flachowsky G (2015) Carbon footprints for food of animal origin. In: Malik PK et al (eds) Livestock production and climate change. CAB International, Wallingford, pp 125–145

    Chapter  Google Scholar 

  • Flachowsky G, Brade W (2007) Reduction potentials for methane emissions from ruminants (in German). Züchtungskunde 79:417–465

    Google Scholar 

  • Flachowsky G, Hachenberg S (2009) CO2-footprints for food of animal origin – present stage and open questions. J Consumer Prot Food Saf 4:190–198

    Article  Google Scholar 

  • Flachowsky G, Kamphues J (2012) Carbon footprints for food of animal origin: what are the most preferable criteria to measure animal yields? Animals 2:108–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Flachowsky G, Lebzien P (2006) Possibilities for reduction of nitrogen (N) excretion from ruminants and the need for further research – a review. Landbauforschung Völkenrode 56:19–30

    CAS  Google Scholar 

  • Flachowsky G, Meyer U (2015a) Sustainable production of protein of animal origin – the state of knowledge. Part 1: Resources and emissions as factors affecting sustainability. J Anim Feed Sci 24:273–282

    Google Scholar 

  • Flachowsky G, Meyer U (2015b) Sustainable production of protein of animal origin – the state of knowledge. Part 2: Aquirements, objectives and ways of sustainability improvements. J Anim Feed Sci 24:283–294

    Google Scholar 

  • Flachowsky G, Meyer U (2015c) Challenges for plant breeders from the view of animal nutrition. Agriculture 5:1252–1272

    Google Scholar 

  • Flachowsky G, Schulz E (2011) Sustainability in animal feeding (in German). Annual book. In: Mühle and Mischfutter. Schäfer, Detmold, pp 189–209

    Google Scholar 

  • Flachowsky G, Gruen M, Meyer U (2013a) Feed efficient ruminant production: opportunities and challenges. J Anim Feed Sci 22:177–187

    Article  Google Scholar 

  • Flachowsky G, Meyer U, Gruen M (2013b) Plant and animal breeding as starting points for sustainable agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 12. Springer, Dordrecht, pp 201–224

    Chapter  Google Scholar 

  • Flachowsky G, Meyer U, Behl RK (2017a) In: Behl RK et al (eds) Objectives for plant breeding from the view of animal nutrition in Biotechnology and Bioscience Perspectives. Agrobiost Int. Publishers, Jodhpur, pp 17–29

    Google Scholar 

  • Flachowsky, G., Meyer, U., Südekum, K.-H. (2017b) Land use for edible protein of animal origin – a review. Animals 7, 25. https://doi.org/10.3390/ani7030025, 19 p

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mouller ND, O’Conell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Fritsche UR, Leuchtner J, Matthes FC, Rausch L, Simon HH (1997) Gesamt-Emissions-Model Integrierter Systeme (GEMIS). Öko-Institut, Wiesbaden

    Google Scholar 

  • Frorip J, Kokin E, Praks J, Poikalainen V, Ruus A, Veermäe I, Lepasalu L, Schäfer W, Mikkola H, Ahokas J (2012) Energy consumption in animal production – case farm study. Agron Res Biosyst Eng 10(Special Issue 1):39–48

    Google Scholar 

  • Gerbens-Leenes PW, Mekonnen MM, Hoekstra AY (2013) The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Res Ind 1–2:25–36

    Article  Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B, Mollet A, Opio C, Dijkman F, Falcucci A, Tempio G (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agric Org of the UN (FAO), Rome, 116 p

    Google Scholar 

  • GfE (Gesellschaft für Ernährungsphysiologie) (1995) Recommendations for the supply of energy and nutrients to beef cattle. (in German). DLG-Verlag, Frankfurt am Main, p 85

    Google Scholar 

  • GfE (1999) Recommendations for the supply of energy and nutrients to laying hens and chicken for fattening (broilers; in German). DLG-Verlag, Frankfurt am Main, 185 p

    Google Scholar 

  • GfE (2001) Recommendations for the supply of energy and nutrients to dairy cows and heifers (in German). DLG-Verlag, Frankfurt am Main, 136 p

    Google Scholar 

  • GfE (2008) Recommendations for the supply of energy and nutrients to pigs. DLG-Verlag, Frankfurt am Main, 245 p

    Google Scholar 

  • Gill M, Smith P, Wilkinson JM (2010) Mitigating climate change: the role of domestic livestock. Animal 4:323–333

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci D, Scherr S, Nierenberg D, Hebebrand C, Shapiro J, Milder J, Wheeler K (2012) Food and Agriculture: the future of sustainability. A strategic input to the sustainable development in the 21st Century (SD21) project. United Nations Department of Economic and Social Affairs, Division for Sustainable Development, New York

    Google Scholar 

  • Gordon LJ, Finalayson CM, Falkenmark M (2010) Managing water in agriculture for food production and other ecosystem services. Agric Water Manag 97:512–519

    Article  Google Scholar 

  • Grabowski NT, Nowak B, Klein K (2008) Proximate chemical composition of long-horned and short horned grasshoppers (Acheta domesticus, Schistocerca gregaria and Phymateus saxosus) available commercially in Germany. Arch Leb 59:204–208

    CAS  Google Scholar 

  • Guillou M, Matheron G (2014) The world’s challenge – Feeding 9 billion people. Springer Netherlands; Ed. QuE; Springer Berlin; 226 p

    Google Scholar 

  • Guyomard H, Darcy-Vrillon B, Esnouf C, Marin M, Goillou M (2012) Eating patterns and food systems: critical knowledge requirements for policy design and implementation. Agric Food Secur 1:1–13

    Article  Google Scholar 

  • Guyomard H, Manceron S, Peyraud JL (2013) Trade in feed grains, animals, and animal products: current trends, future prospects, and main issues. Animal. Frontiers 3:14–18

    Google Scholar 

  • Hall DC, Hall JV (1984) Concepts and measures of natural-resource scarcity with a summary of recent trends. J Environ Econ Manage 11:363–379

    Article  Google Scholar 

  • Hergoualch K, Verchot LV (2011) Stocks and fluxes of carbon associated land use change in Southeast Asia tropical peatlands: a review. Global Biochem Cycl 25 GB2001, 1–13

    Google Scholar 

  • Hoekstra AY (2016) A critique on the water-scarcity weighted water footprint in LCA. Ecol Indic 66:564–573

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan, London, 203 p

    Google Scholar 

  • Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricario J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production – a review of technical options for non-CO2 emissions. In: Gerber PJ, Henderson B, Makkar HPS (eds) FAO animal Production and Health Paper No. 177. FAO, Rome, 206 pp

    Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (Intergovernmantal Panel on Climate Change) (2006) IPCC Guidelines for National Greenhouse Gas Inventories: Glossery. IPCC, Japan. Available at http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/Glossary_Acronyms_BasicInfo/Glossary.pdf

  • ISAAA (International Service for the Acquisition of Agri-Biotechnology Applicationns) (2017) Global Status of Commercialised Transgenic Crops: 2016. ISAAA, Ithaca

    Google Scholar 

  • IUCN (World Conservation Union) (2005) The IUCN Programme 2005–2008. Many voices, one earth Bangkok, Thailand, 17–25 Nov. 2004. Available at: https://cmsdata.iucn.org/downloads/programme-english.pdf

  • Jackson AA (2007) Protein. In: Mann J, Truswell S (eds) Essentials of human nutrition, 3rd edn. Oxford University Press, Oxford, pp 53–72

    Google Scholar 

  • Jeroch H, Flachowsky G, Weissbach F (1993) Feed Science (in German). Fischer Verlag, Jena und Stuttgart, 510 p

    Google Scholar 

  • Jokiniemi T, Mikkola H, Rossner H, Talgre L, Lauringson E, Hovi M, Ahokas J (2012) Energy savings in plant production. Agron Res Biosyst Eng 10(Special Issue 1):85–96

    Google Scholar 

  • Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci 109:6868–6872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebreab E (2013) Sustainable animal agriculture. CAB International, Wallingford, 321 p

    Book  Google Scholar 

  • Keyzer MA, Merbis MD, Pavel IFPW, van Westenbeeck CFA (2005) Diets shifts towards meat and the effects on cereal use: can we feed the animals in 2030? Ecol Econ 55:187–202

    Article  Google Scholar 

  • Kim H, Kim S, Dale BE (2009) Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43:961–967

    Article  CAS  PubMed  Google Scholar 

  • Knaus W (2013) Re-thinking dairy cow feeding in light of food security. AgroLife Scientific Journal 2(1):36–40

    Google Scholar 

  • Kool A, Marinussen M, Blonk H (2012) LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and utilization – GHG emissions of N, P and K fertilizer production, Blonk Consultants, Gouda, 15 p

    Google Scholar 

  • Kovac DJ, Simeunovic JB, Babic OB, Misan AC, Milovanovic IL (2013) Algae in food and feed. Food and Feed Research 40:21–32

    Google Scholar 

  • Krauß M, Drasting K, Prochnow A, Rose-Meierhöfer S, Kraatz S (2016) Drinking and cleaning water use in a dairy cow barn. Water 8:302. doi: 3390/w8070302

    Article  Google Scholar 

  • Lampe C, Dittert K, Sattelmacher B, Wachendorf M, Loges R, Taube F (2006) Sources and rates of nitrous oxide emissions from grassed grassland after application of 15N-labelled mineral fertilizer and slurry. Soil Biol Biochem 38:2602–2613

    Article  CAS  Google Scholar 

  • Lawrence D, Beddington J, Godfray C, Crute J, Haddad L, Muir J, Pretty J, Robinson S, Toulmin C (2011) The challenge of global food sustainability. Food Policy 36(Suppl. 1):S1–S2

    Google Scholar 

  • Lesschen JP, van den Berg M, Westhock HJ, Witzke HP, Oenema O (2011) Greenhouse gas emission profiles of European livestock sectors. Anim Feed Scie Technol 166-167:16–28

    Article  CAS  Google Scholar 

  • Lundy ME, Parrella MP (2015) Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS One 10(4):e0118785. https://doi.org/10.1371/journal.pone.0118785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacLeod M, Gerber P, Mottet A, Tempio G, Falcucci A, Opio C, Vellinga T, Henderson B, Steinfeld H (2013) Greenhouse gas emissions from pig and chicken supply chains – a global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome, 171 p

    Google Scholar 

  • Makkar HPS (2012) Biofuel co-products as livestock feed. Opportunities and challenges. Food and Agriculture Organization of the United Nations, Rome, p 533

    Google Scholar 

  • Makkar HPS, Ankers P (2014) Towards sustainable animal diets: a survey based study. Anim Feed Sci Technol 198:309–322

    Article  Google Scholar 

  • Makkar HPS, Tran G, Heuze V, Ankers a P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33

    Article  CAS  Google Scholar 

  • Malik PK, Bhatta R, Takahashi J, Kohn RA, Prasad CS (2015) Livestock production and climate change. CAB International, Wallingford/Boston, 385 p

    Book  Google Scholar 

  • McPherson AT (1986) Food for man from the past to the future: toward “a revolutionary advance in technology” a complete synthesis of food. Awasthi Associates, Allahabad, 83 p

    Google Scholar 

  • Meadows DL, Meadows DH, Zahn E (1972) Die Grenzen des Wachstums. Bericht des Club of Rome zur Lage der Menschheit. Dt. Verlags-Anstalt, New York

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of farm animals and farm animal products. Value of Water Research Report Series No. 48. UNESCO-IHE, Delft

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15(3):401–415

    Article  CAS  Google Scholar 

  • Meyer U, Everinghoff M, Gaedeken D, Flachowsky G (2004) Investigations on the water intake of lactating dairy cows. Livestock Production Sci 90:117–121

    Article  Google Scholar 

  • Meyer U, Stahl W, Flachowsky G (2006) Investigations on the water intake of growing bulls. Livest Sci 103:186–191

    Article  Google Scholar 

  • Millar K, Hobson-West P, Nerlich B (2009) Ethical futures: bioscience and food horizons. Wageningen Academic Publishers, Wageningen, 448 p

    Book  Google Scholar 

  • Molden D (ed) (2007) Water for food, water for life: a comprehensive assessment of water management in agriculture. IWMI/Earthscan, London, 645 p

    Google Scholar 

  • Molden DT, Oweis P, Steduto P, Bindraban MA, Hanjra RA, Kijne J (2010) Improving agricultural water productivity: between optimism and caution. Agr Water Manage 97:528–535

    Article  Google Scholar 

  • Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn C, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J (2013) Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J Anim Sci 91:5070–5094

    Article  CAS  PubMed  Google Scholar 

  • Mungkung R, Aubin J, Prihadi TH, Slembrouck J, van der Werf HMG, Legendre M (2013) Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. J Clean Prod 57:249–256

    Article  Google Scholar 

  • NASEM (Committee on Genetically Engineered Crops: Past Experience and Future Prospects, Board on Agriculture and Natural Resources; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine, National Academies of Sciences, Engineering, and Medicine) (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC, 584 p. 10.17226/23395

    Google Scholar 

  • Newman JA, Anand M, Henry HAL, Hunt S, Gedalof Z (2011) Climate change biology. CABI, Wallingford, 289 p

    Book  Google Scholar 

  • Niemann H, Kuhla B, Flachowsky G (2011) Perspectives for feed-efficient animal production. J Anim Sci 89:4344–4363

    Article  CAS  PubMed  Google Scholar 

  • Nijdam D, Rood T, Westhoek H (2012) The price of protein: review of land use and carbon footprints from life cycle assessments of animal food production and their substitutes. Food Policy 37:760–770

    Article  Google Scholar 

  • Nocera D (2017) Sustainable solar-to-fuels and solar-to-fertilizer production. Annual Meeting of the American Chemical Society, Division of Inorganic Chemistry, Session 538

    Google Scholar 

  • NRC (National Research Council) (2015) Critical role of animal science research in food security and sustainability. The National Academies Press, Washington, DC, 460 p

    Google Scholar 

  • Oonincx DGAB, De Boer LJM (2012) Environmental impact of the production of mealworms as a protein sources for humans – a life cycle assessment. PLoS One 7:e51145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oonincx DGAB, van Itterbeeck J, Heetkamp MJW, Van den Brand H, Van Loon JJA, Van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal and human consumption. PLoS One 5:e14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H (2013) Greenhouse gas emissions from ruminant supply chains – a global life cycle assessment. Food and Agric Org of the UN (FAO), Rome, 191 p

    Google Scholar 

  • Peters CJ, Wilkins JL, Fick GW (2007) Testing a complete-diet model for estimation the land resource requirements of food consumption and agricultural carrying capacity: the New York state example. Renew Agric Food Syst 22:145–153

    Article  Google Scholar 

  • Peters GM, Rowley HV, Wiedemann S, Tucker R, Short MD, Schulz M (2010) Red meat production in australia: life cycle assessment and comparison with overseas studies. Environ Sci Technol 44:1327–1332

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Pimentel M (2003) Sustainable of meat-based and plant-based diets and the environment. Am J Clin Nutr 78:6605–6635

    Google Scholar 

  • Pimentel D, Berger B, Filberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: agricultural and environmental issues. Bioscience 54:909–918

    Article  Google Scholar 

  • Post MJ (2013) Medical technology to produce food. J Sci Food Agric. https://doi.org/10.1002/jsfa.6474. Retrieved 20 June 2016

  • Post MJ (2014) An alternative animal protein source: cultured beef. Ann N Y Acad Sci 1328:29–33

    Article  CAS  PubMed  Google Scholar 

  • Potthast T, Meisch S (2012) Climate change and sustainable development. Ethical perspectives on land use and food production. Wageningen Academic Publ, Wageningen, 526 p

    Book  Google Scholar 

  • Reynolds MP (2010) Climate change and crop production. CAB International, Wallingford/Cambridge, 292 p

    Book  Google Scholar 

  • Ricci P, Rooke JA, Nevison I, Waterhouse A (2013) Methane emissions from beef and dairy cattle: quantifying the effect of physiological state and diet characteristics. J Animal Sci 91:5379–5389

    Article  CAS  Google Scholar 

  • Ros J, van der Born G, Notenboom J (2010) The contribution of by-products to the sustainability of biofuels. Netherlands Environmental Assessment Agency, Bilthoven, 8 p

    Google Scholar 

  • Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:802–823

    Article  CAS  PubMed  Google Scholar 

  • Ruttan VW (1999) The transition to agricultural sustainability. Proc Natl Acad Sci 96:5960–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Muros M-J, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27

    Article  CAS  Google Scholar 

  • SCAR (Scientific Committee for Agricultural Research) (2008) New challenges for agricultural research. Climate change, rural development, agricultural knowledge systems. The 2nd SCAR Foresight Exercise, Brussels, 112 p

    Google Scholar 

  • Schlink AC, Nguyen M-L, Viljoen GJ (2010) Water requirements for livestock production: a global perspective. Rev Sci Tech Off Int Epiz 29:603–619

    Article  CAS  Google Scholar 

  • Schmeer M, Loges R, Dittert K, Senbayram M, Horn R (2014) Legume-based forage production reduce nitrous oxide emissions. Soil & Tillage Res 143:17–25

    Article  Google Scholar 

  • Scholz RW, Wellmer F-H (2013) Approaching a dynamic view on the availability of mineral sources: what we may learn from the case of phosphorus. Glob Environ Chan 23:11–27

    Article  Google Scholar 

  • Smil V (2000) Feeding the world: a challenge for the twenty-first century. MIT Press, Cambridge, MA, p 360

    Google Scholar 

  • Smith J, Sones K, Grace D, MacMillan S, Tarawali S, Herrero M (2013) Beyond milk, meat, and eggs: role of livestock in food and nutrition security. Anim Front 3:6–13

    Article  Google Scholar 

  • Souci SW, Fachmann W, Kraut H (2008) Food composition and nutrition tables. MedPharm Scientific Publishers; 7th rev. and compl. Ed., Taylor & Francis; A CRC Press Book, 1364 p

    Google Scholar 

  • Stevens R, Lauglin R, Burns L, Arah J, Hood R (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151

    Article  CAS  Google Scholar 

  • Sundstol F, Owen E (1984) Straw and other fibrous by-products as feed. Developments in animal and veterinary sciences, 14. Elsevier, Amsterdam, 604 p

    Google Scholar 

  • Talgre L, Lauringson E, Rosstalu H, Astover A, Eremeev V, Selge A (2009) The effects of pure and undersowing green manure on yields of succeeding spring cereals. Acta Agric Scand Sect B Soil Plant Sci 59(1):70–76

    CAS  Google Scholar 

  • The-Royal-Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. Royal Society Policy document 11/09, issued Oct. 2009, RS 1608

    Google Scholar 

  • Thompson B, Amoroso L (2014) Improving diets and nutrition – food-based approaches. CAB International, Wallingford/Boston, 403 p

    Book  Google Scholar 

  • Thorup Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302

    Article  Google Scholar 

  • Tillie P, Dillen K, Rodriguez-Cerezo E (2013) The pipeline of GM crops for improved animal feed: challenges for commercial use. In: Flachowsky G (ed) Animal nutrition with transgenic plants, CABI biotechnology series. CABI, Wallingford/Boston, p 166

    Chapter  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. BioFuels 1:143–162

    Article  CAS  Google Scholar 

  • Upham P, Dendler L, Bleda M (2010) Carbon labelling of grocery products: public perceptions and potential emissions reductions. J Clean Prod 19:348–355

    Article  Google Scholar 

  • USDA (United State Department of Agriculture); (2016) National Nutrient database for Standard Reference. Release 28. http://ndb.nal.usda.gov/ndb/foods

    Google Scholar 

  • Van Groningen J, Velthof G, van der Bolt F, Vos A, Kuikman P (2005) Seasonal variation in N2O emissions from urine patches: effects of urine concentration, soil compaction and dung. Plant Soil 273:15–27

    Article  CAS  Google Scholar 

  • Van Huis A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58:563–583

    Article  PubMed  CAS  Google Scholar 

  • Van Huis A, van Itterbeek J, Klunder H, Mertens E, Halloran A, Muir G, Vantome P (2013) Edible insects – future prospects for food and feed security, FAO Forestry Paper 171. Food and Agriculture Organization of the United Nation, Rome, 187 p

    Google Scholar 

  • Van Huis A, Van Gurp H, Dicke M (2014) The insect cookbook – food for a sustainable planet. Columbia University Press, New York, 216 p

    Book  Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222

    Article  Google Scholar 

  • Viljoen A, Wiskerke JSC (2012) Sustainable food planning: evolving theory and practice. Wageningen Academic Publ, Wageningen, 600 p

    Book  Google Scholar 

  • Von Carlowitz HC (1713) Sylviculture oeconomica, Anweisung zur wilden Baum-Zucht. Braun Verlag, Leipzig, pp 105–106

    Google Scholar 

  • Wals AEJ, Corcoran PB (2012) Learning for sustainability in times of accelerating change. Wageningen Academic Publishers, Wageningen, 550 p

    Book  Google Scholar 

  • Wennemer H, Flachowsky G, Hoffmann V (2006) Protein, population, politics – how protein can be supplied sustainable in the 21st century. Plexus Verlag, Mittenberg/Frankfurt/Main, 160 pp

    Google Scholar 

  • WHO, FAO, UNU (2007) Protein and amino acid requirements in human nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation, World Health Organization Technical Report Series, vol 935. WHO, Geneva, pp 1–265

    Google Scholar 

  • Wilkinson JM (2011) Re-defining efficacy of feed use by livestock. Animal 5:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Williams AG, Audsley E, Sanders DL (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main report. Defra Research Project IS0205. Cranfield University and Defra, Bedford, 97 p. Available on www.silsoe.cranfied.ac.uk, and www.defra.gov.uk

    Google Scholar 

  • Wu G, Bazer FW, Cross HR (2014a) Land-based production of animal protein: impacts, efficiency, and sustainability. Ann N Y Acad Sci 1328:18–28

    Article  PubMed  Google Scholar 

  • Wu G, Fanzo J, Miller DD, Pingali P, Post M, Steiner JL, Thalacker-Mercer AE (2014b) Production and supply of high-quality food protein for human consumption: sustainability, challenges and innovations. Ann N Y Acad Sci 1321:1–19

    Article  CAS  PubMed  Google Scholar 

  • Young W, Hwang K, McDonald S, Oates CJ (2010) Sustainable consumption: green consumer behaviour when purchasing products. Sustain Dev 1:20–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Flachowsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flachowsky, G., von Soosten, D., Meyer, U. (2017). Contributions to a Sustainable Production of Food of Animal Origin. In: Dhanarajan, A. (eds) Sustainable Agriculture towards Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-6647-4_12

Download citation

Publish with us

Policies and ethics