Introduction
A server implementation allows you to emit AG-UI events directly from your
agent or server. This approach is ideal when you’re building a new agent from
scratch or want a dedicated service for your agent capabilities.
When to use a server implementation
Server implementations allow you to directly emit AG-UI events from your agent
or server. If you are not using an agent framework or haven’t created a protocol
for your agent framework yet, this is the best way to get started.
Server implementations are also great for:
- Building a new agent frameworks from scratch
- Maximum control over how and what events are emitted
- Exposing your agent as a standalone API
What you’ll build
In this guide, we’ll create a standalone HTTP server that:
- Accepts AG-UI protocol requests
- Connects to OpenAI’s GPT-4o model
- Streams responses back as AG-UI events
- Handles tool calls and state management
Let’s get started!
Prerequisites
Before we begin, make sure you have:
- Python 3.12 or later
- Poetry for dependency
management
- An OpenAI API key
1. Provide your OpenAI API key
First, let’s set up your API key:
# Set your OpenAI API key
export OPENAI_API_KEY=your-api-key-here
2. Install build utilities
Install the following tools:
curl -fsSL https://get.pnpm.io/install.sh | sh -
Step 1 – Scaffold your server
Start by cloning the repo and navigating to the TypeScript SDK:
Copy the server-starter template to create your OpenAI server:
cp -r integrations/server-starter integrations/openai-server
Open integrations/openai-server/package.json
and update the fields to match
your new folder:
{
"name": "@ag-ui/openai-server",
"author": "Your Name <[email protected]>",
"version": "0.0.1",
... rest of package.json
}
Next, update the class name inside integrations/openai-server/src/index.ts
:
// Change the name to OpenAIServerAgent to add a minimal middleware for your integration.
// You can use this later on to add configuration etc.
export class OpenAIServerAgent extends HttpAgent {}
Finally, introduce your integration to the dojo by adding it to
apps/dojo/src/menu.ts
:
// ...
export const menuIntegrations: MenuIntegrationConfig[] = [
// ...
{
id: "openai-server",
name: "OpenAI Server",
features: ["agentic_chat"],
},
]
And apps/dojo/src/agents.ts
:
// ...
import { OpenAIServerAgent } from "@ag-ui/openai-server"
export const agentsIntegrations: AgentIntegrationConfig[] = [
// ...
{
id: "openai-server",
agents: async () => {
return {
agentic_chat: new OpenAIServerAgent(),
}
},
},
]
Step 2 – Add package to dojo dependencies
Open apps/dojo/package.json
and add the package @ag-ui/openai-server
:
{
"name": "demo-viewer",
"version": "0.1.0",
"private": true,
"scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start",
"lint": "next lint"
},
"dependencies": {
"@ag-ui/agno": "workspace:*",
"@ag-ui/langgraph": "workspace:*",
"@ag-ui/mastra": "workspace:*",
"@ag-ui/middleware-starter": "workspace:*",
"@ag-ui/server-starter": "workspace:*",
"@ag-ui/server-starter-all-features": "workspace:*",
"@ag-ui/vercel-ai-sdk": "workspace:*",
"@ag-ui/openai-server": "workspace:*", <- Add this line
... rest of package.json
}
Step 3 – Start the dojo and server
Now let’s see your work in action. First, start your Python server:
cd integrations/openai/server/python
poetry install && poetry run dev
In another terminal, start the dojo:
cd typescript-sdk
# Install dependencies
pnpm install
# Compile the project and run the dojo
turbo run dev
Head over to http://localhost:3000 and choose
OpenAI from the drop-down. You’ll see the stub server replies with Hello
world! for now.
Here’s what’s happening with that stub server:
# integrations/openai/server/python/example_server/__init__.py
@app.post("/")
async def agentic_chat_endpoint(input_data: RunAgentInput, request: Request):
"""Agentic chat endpoint"""
# Get the accept header from the request
accept_header = request.headers.get("accept")
# Create an event encoder to properly format SSE events
encoder = EventEncoder(accept=accept_header)
async def event_generator():
# Send run started event
yield encoder.encode(
RunStartedEvent(
type=EventType.RUN_STARTED,
thread_id=input_data.thread_id,
run_id=input_data.run_id
),
)
message_id = str(uuid.uuid4())
yield encoder.encode(
TextMessageStartEvent(
type=EventType.TEXT_MESSAGE_START,
message_id=message_id,
role="assistant"
)
)
yield encoder.encode(
TextMessageContentEvent(
type=EventType.TEXT_MESSAGE_CONTENT,
message_id=message_id,
delta="Hello world!"
)
)
yield encoder.encode(
TextMessageEndEvent(
type=EventType.TEXT_MESSAGE_END,
message_id=message_id
)
)
# Send run finished event
yield encoder.encode(
RunFinishedEvent(
type=EventType.RUN_FINISHED,
thread_id=input_data.thread_id,
run_id=input_data.run_id
),
)
return StreamingResponse(
event_generator(),
media_type=encoder.get_content_type()
)
Step 4 – Bridge OpenAI with AG-UI
Let’s transform our stub into a real server that streams completions from
OpenAI.
Install the OpenAI SDK
First, we need the OpenAI SDK:
cd integrations/openai/server/python
poetry add openai
AG-UI recap
An AG-UI server implements the endpoint and emits a sequence of events to
signal:
- lifecycle events (
RUN_STARTED
, RUN_FINISHED
, RUN_ERROR
)
- content events (
TEXT_MESSAGE_*
, TOOL_CALL_*
, and more)
Implement the streaming server
Now we’ll transform our stub server into a real OpenAI integration. The key
difference is that instead of sending a hardcoded “Hello world!” message, we’ll
connect to OpenAI’s API and stream the response back through AG-UI events.
The implementation follows the same event flow as our stub, but we’ll add the
OpenAI client initialization and replace our mock response with actual API
calls. We’ll also handle tool calls if they’re present in the response, making
our server fully capable of using functions when needed.
import os
import uuid
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from ag_ui.core import (
RunAgentInput,
EventType,
RunStartedEvent,
RunFinishedEvent,
RunErrorEvent,
)
from ag_ui.encoder import EventEncoder
from openai import OpenAI
app = FastAPI(title="AG-UI OpenAI Server")
# Initialize OpenAI client - uses OPENAI_API_KEY from environment
client = OpenAI()
@app.post("/")
async def agentic_chat_endpoint(input_data: RunAgentInput, request: Request):
"""OpenAI agentic chat endpoint"""
accept_header = request.headers.get("accept")
encoder = EventEncoder(accept=accept_header)
async def event_generator():
try:
yield encoder.encode(
RunStartedEvent(
type=EventType.RUN_STARTED,
thread_id=input_data.thread_id,
run_id=input_data.run_id
)
)
# Call OpenAI's API with streaming enabled
stream = client.chat.completions.create(
model="gpt-4o",
stream=True,
# Convert AG-UI tools format to OpenAI's expected format
tools=[
{
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.parameters,
}
}
for tool in input_data.tools
] if input_data.tools else None,
# Transform AG-UI messages to OpenAI's message format
messages=[
{
"role": message.role,
"content": message.content or "",
# Include tool calls if this is an assistant message with tools
**({"tool_calls": message.tool_calls} if message.role == "assistant" and hasattr(message, 'tool_calls') and message.tool_calls else {}),
# Include tool call ID if this is a tool result message
**({"tool_call_id": message.tool_call_id} if message.role == "tool" and hasattr(message, 'tool_call_id') else {}),
}
for message in input_data.messages
],
)
message_id = str(uuid.uuid4())
# Stream each chunk from OpenAI's response
for chunk in stream:
# Handle text content chunks
if chunk.choices[0].delta.content:
yield encoder.encode({
"type": EventType.TEXT_MESSAGE_CHUNK,
"message_id": message_id,
"delta": chunk.choices[0].delta.content,
})
# Handle tool call chunks
elif chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
yield encoder.encode({
"type": EventType.TOOL_CALL_CHUNK,
"tool_call_id": tool_call.id,
"tool_call_name": tool_call.function.name if tool_call.function else None,
"parent_message_id": message_id,
"delta": tool_call.function.arguments if tool_call.function else None,
})
yield encoder.encode(
RunFinishedEvent(
type=EventType.RUN_FINISHED,
thread_id=input_data.thread_id,
run_id=input_data.run_id
)
)
except Exception as error:
yield encoder.encode(
RunErrorEvent(
type=EventType.RUN_ERROR,
message=str(error)
)
)
return StreamingResponse(
event_generator(),
media_type=encoder.get_content_type()
)
def main():
"""Run the uvicorn server."""
port = int(os.getenv("PORT", "8000"))
uvicorn.run(
"example_server:app",
host="0.0.0.0",
port=port,
reload=True
)
if __name__ == "__main__":
main()
What happens under the hood?
Let’s break down what your server is doing:
- Setup – We create an OpenAI client and emit
RUN_STARTED
- Request – We send the user’s messages to
chat.completions
with
stream=True
- Streaming – We forward each chunk as either
TEXT_MESSAGE_CHUNK
or
TOOL_CALL_CHUNK
- Finish – We emit
RUN_FINISHED
(or RUN_ERROR
if something goes wrong)
Step 5 – Chat with your server
Reload the dojo page and start typing. You’ll see GPT-4o streaming its answer in
real-time, word by word.
Tools like CopilotKit already understand AG-UI and
provide plug-and-play React components. Point them at your server endpoint and
you get a full-featured chat UI out of the box.
Share your integration
Did you build a custom server that others could reuse? We welcome community
contributions!
- Fork the AG-UI repository
- Add your package under
typescript-sdk/integrations/
. See
Contributing for more details and naming
conventions.
- Open a pull request describing your use-case and design decisions
If you have questions, need feedback, or want to validate an idea first, start a
thread in the GitHub Discussions board:
AG-UI GitHub Discussions board.
Your integration might ship in the next release and help the entire AG-UI
ecosystem grow.
Conclusion
You now have a fully-functional AG-UI server for OpenAI and a local playground
to test it. From here you can:
- Add tool calls to enhance your server
- Deploy your server to production
- Bring AG-UI to any other model or service
Happy building!