@@ -47,16 +47,16 @@ def fit(self, X, y):
4747 """Build a forest of trees from the training set (X, y).
4848
4949 Args:
50- X:
50+ X (bigframes.dataframe.DataFrame or bigframes.series.Series) :
5151 Series or DataFrame of shape (n_samples, n_features). Training data.
5252
53- y:
53+ y (bigframes.dataframe.DataFrame or bigframes.series.Series) :
5454 Series or DataFrame of shape (n_samples,) or (n_samples, n_targets).
5555 Target values. Will be cast to X's dtype if necessary.
5656
5757
5858 Returns:
59- Fitted Estimator.
59+ ForestModel: Fitted Estimator.
6060 """
6161 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
6262
@@ -73,12 +73,12 @@ def predict(self, X):
7373 mean predicted regression targets of the trees in the forest.
7474
7575 Args:
76- X:
76+ X (bigframes.dataframe.DataFrame or bigframes.series.Series) :
7777 Series or DataFrame of shape (n_samples, n_features). The data matrix for
7878 which we want to get the predictions.
7979
8080 Returns:
81- The predicted values.
81+ bigframes.dataframe.DataFrame: The predicted values.
8282 """
8383 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
8484
@@ -91,38 +91,38 @@ class RandomForestRegressor(ForestRegressor):
9191 to improve the predictive accuracy and control over-fitting.
9292
9393 Args:
94- num_parallel_tree: Optional[int]
94+ num_parallel_tree ( Optional[int]):
9595 Number of parallel trees constructed during each iteration. Default to 100. Minimum value is 2.
96- tree_method: Optional[str]
96+ tree_method ( Optional[str]):
9797 Specify which tree method to use. Default to "auto". If this parameter is set to
9898 default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx",
9999 "hist".
100- min_child_weight : Optional[float]
100+ min_child_weight ( Optional[float]):
101101 Minimum sum of instance weight(hessian) needed in a child. Default to 1.
102- colsample_bytree : Optional[float]
102+ colsample_bytree ( Optional[float]):
103103 Subsample ratio of columns when constructing each tree. Default to 1.0. The value should be between 0 and 1.
104- colsample_bylevel : Optional[float]
104+ colsample_bylevel ( Optional[float]):
105105 Subsample ratio of columns for each level. Default to 1.0. The value should be between 0 and 1.
106- colsample_bynode : Optional[float]
106+ colsample_bynode ( Optional[float]):
107107 Subsample ratio of columns for each split. Default to 0.8. The value should be between 0 and 1.
108- gamma : Optional[float]
108+ gamma ( Optional[float]):
109109 (min_split_loss) Minimum loss reduction required to make a further partition on a
110110 leaf node of the tree. Default to 0.0.
111- max_depth : Optional[int]
111+ max_depth ( Optional[int]):
112112 Maximum tree depth for base learners. Default to 15. The value should be greater than 0 and less than 1.
113- subsample : Optional[float]
113+ subsample ( Optional[float]:
114114 Subsample ratio of the training instance. Default to 0.8. The value should be greater than 0 and less than 1.
115- reg_alpha : Optional[float]
115+ reg_alpha ( Optional[float]):
116116 L1 regularization term on weights (xgb's alpha). Default to 0.0.
117- reg_lambda : Optional[float]
117+ reg_lambda ( Optional[float]):
118118 L2 regularization term on weights (xgb's lambda). Default to 1.0.
119- early_stop: Optional[bool]
119+ early_stop ( Optional[bool]):
120120 Whether training should stop after the first iteration. Default to True.
121- min_rel_progress: Optional[float]
121+ min_rel_progress ( Optional[float]):
122122 Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01.
123- enable_global_explain: Optional[bool]
123+ enable_global_explain ( Optional[bool]):
124124 Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False.
125- xgboost_version: Optional[str]
125+ xgboost_version ( Optional[str]):
126126 Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1".
127127 """
128128
@@ -144,7 +144,7 @@ def predict(self, X):
144144 which we want to get the predictions.
145145
146146 Returns:
147- The predicted values.
147+ bigframes.dataframe.DataFrame: The predicted values.
148148 """
149149 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
150150
@@ -158,37 +158,37 @@ class RandomForestClassifier(ForestClassifier):
158158 improve the predictive accuracy and control over-fitting.
159159
160160 Args:
161- num_parallel_tree: Optional[int]
161+ num_parallel_tree ( Optional[int]):
162162 Number of parallel trees constructed during each iteration. Default to 100. Minimum value is 2.
163- tree_method: Optional[str]
163+ tree_method ( Optional[str]):
164164 Specify which tree method to use. Default to "auto". If this parameter is set to
165165 default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx",
166166 "hist".
167- min_child_weight : Optional[float]
167+ min_child_weight ( Optional[float]):
168168 Minimum sum of instance weight(hessian) needed in a child. Default to 1.
169- colsample_bytree : Optional[float]
169+ colsample_bytree ( Optional[float]):
170170 Subsample ratio of columns when constructing each tree. Default to 1.0. The value should be between 0 and 1.
171- colsample_bylevel : Optional[float]
171+ colsample_bylevel ( Optional[float]):
172172 Subsample ratio of columns for each level. Default to 1.0. The value should be between 0 and 1.
173- colsample_bynode : Optional[float]
173+ colsample_bynode ( Optional[float]):
174174 Subsample ratio of columns for each split. Default to 0.8. The value should be between 0 and 1.
175- gamma : Optional[float]
175+ gamma ( Optional[float]):
176176 (min_split_loss) Minimum loss reduction required to make a further partition on a
177177 leaf node of the tree. Default to 0.0.
178- max_depth : Optional[int]
178+ max_depth ( Optional[int]):
179179 Maximum tree depth for base learners. Default to 15. The value should be greater than 0 and less than 1.
180- subsample : Optional[float]
180+ subsample ( Optional[float]):
181181 Subsample ratio of the training instance. Default to 0.8. The value should be greater than 0 and less than 1.
182- reg_alpha : Optional[float]
182+ reg_alpha ( Optional[float]):
183183 L1 regularization term on weights (xgb's alpha). Default to 0.0.
184- reg_lambda : Optional[float]
184+ reg_lambda ( Optional[float]):
185185 L2 regularization term on weights (xgb's lambda). Default to 1.0.
186- early_stop: Optional[bool]
186+ early_stop ( Optional[bool]):
187187 Whether training should stop after the first iteration. Default to True.
188- min_rel_progress: Optional[float]
188+ min_rel_progress ( Optional[float]):
189189 Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01.
190- enable_global_explain: Optional[bool]
190+ enable_global_explain ( Optional[bool]):
191191 Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False.
192- xgboost_version: Optional[str]
192+ xgboost_version ( Optional[str]):
193193 Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1".ß
194194 """
0 commit comments