|
| 1 | +import whisper |
| 2 | +import re |
| 3 | +import openai |
| 4 | +import os |
| 5 | + |
| 6 | +def transcript_generator(): |
| 7 | + # Load Whisper model |
| 8 | + model = whisper.load_model("base") |
| 9 | + |
| 10 | + # Transcribe audio file |
| 11 | + result = model.transcribe("audio.mp4") |
| 12 | + |
| 13 | + # Send the transcript to the summarizer |
| 14 | + provide_summarizer(result) |
| 15 | + |
| 16 | + |
| 17 | +def provide_summarizer(Text): |
| 18 | + # Set up Groq OpenAI-compatible API credentials |
| 19 | + openai.api_key = os.getenv("OPENAI_API_KEY", "your-api-key-here") # Replace or set in environment |
| 20 | + openai.api_base = "https://api.groq.com/openai/v1" |
| 21 | + |
| 22 | + # Extract text from the Whisper result |
| 23 | + text_to_summarize = Text["text"] |
| 24 | + |
| 25 | + # Send the transcription to Groq for summarization |
| 26 | + response = openai.ChatCompletion.create( |
| 27 | + model="llama3-8b-8192", |
| 28 | + messages=[ |
| 29 | + {"role": "system", "content": "You are a helpful assistant who summarizes long text into bullet points."}, |
| 30 | + {"role": "user", "content": f"Summarize the following:\n\n{text_to_summarize}"} |
| 31 | + ] |
| 32 | + ) |
| 33 | + |
| 34 | + # Split the response into sentences |
| 35 | + summary = re.split(r'(?<=[.!?]) +', response["choices"][0]["message"]["content"]) |
| 36 | + |
| 37 | + # Save summary to file |
| 38 | + with open("summary.txt", "w+", encoding="utf-8") as file: |
| 39 | + for sentence in summary: |
| 40 | + cleaned = sentence.strip() |
| 41 | + if cleaned: |
| 42 | + file.write("- " + cleaned + "\n") |
| 43 | + |
| 44 | + |
| 45 | +if __name__ == "__main__": |
| 46 | + transcript_generator() |
0 commit comments