Abstract
Recent work has shown how Bayesian optimization (BO) is an efficient method for optimizing expensive experiments such as chemical reactions. However, in previous studies, each optimization has been started from scratch with no information about previous or similar chemical optimization studies. Therefore, BO can still require more iterations than many experimental budgets provide. Here, we overcome this challenge using multi-task BO. Through in silico benchmarking studies, we show how past experimental data can be leveraged to improve the quality and speed of reaction optimization.
![Author ORCID: We display the ORCID iD icon alongside authors names on our website to acknowledge that the ORCiD has been authenticated when entered by the user. To view the users ORCiD record click the icon. [opens in a new tab]](https://chemrxiv.org/engage/assets/public/chemrxiv/images/logos/orcid.png)