Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hornworts reveal a spatial model for pyrenoid-based CO2-concentrating mechanisms in land plants

Abstract

Pyrenoid-based CO2-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO2 around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs. Here we report a thorough investigation of a hornwort pCCM using the emerging model Anthoceros agrestis. The pyrenoids in A. agrestis exhibit liquid-like properties similar to those in Chlamydomonas, but they differ by lacking starch sheaths and being enclosed by multiple thylakoids. We found that the core pCCM components in Chlamydomonas, including BST, LCIB and CAH3, are conserved in A. agrestis and probably have similar functions on the basis of their subcellular localizations. The underlying chassis for concentrating CO2 might therefore be shared between hornworts and Chlamydomonas, and ancestral to land plants. Our study presents a spatial model for a pCCM in a land plant, paving the way for future biochemical and genetic investigations.

Access to this article via ICE Institution of Civil Engineers is not available.

This is a preview of subscription content, access via your institution

Access options

Access to this article via ICE Institution of Civil Engineers is not available.

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and physical properties of pyrenoids in A. agrestis.
Fig. 2: Distribution of photosystems and BST channels on thylakoids of A. agrestis.
Fig. 3: Pyrenoids are organized around CAH3 in A. agrestis.
Fig. 4: A. agrestis LCIB localizes to the chloroplast membrane.
Fig. 5: A. agrestis Rubisco assembly and CBB cycle proteins localize to pyrenoids.
Fig. 6: The spatial model of the A. agrestis pCCM and comparison with that of Chlamydomonas.

Similar content being viewed by others

Data availability

Newly generated proteomics data have been deposited in MassIVE, under accession no. MSV000095322. The gene expression data can be found in the NCBI Sequence Read Archive under BioProject no. PRJNA996135. The protein structure used for aiding Rubisco antibody design can be found in the Protein Data Bank (accession no. 2V63).

References

  1. Bar-On, Y. M. & Milo, R. The global mass and average rate of Rubisco. Proc. Natl Acad. Sci. USA 116, 4738–4743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ellis, R. J. The most abundant protein in the world. Trends Biochem. Sci. 4, 241–244 (1979).

    Article  CAS  Google Scholar 

  3. Leegood, R. C. A welcome diversion from photorespiration. Nat. Biotechnol. 25, 539–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Long, S. P., Zhu, X.-G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Griffiths, H., Meyer, M. T. & Rickaby, R. E. M. Overcoming adversity through diversity: aquatic carbon concentrating mechanisms. J. Exp. Bot. 68, 3689–3695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Badger, M. R. & Price, G. D. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54, 609–622 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Mackinder, L. C. M. et al. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle. Proc. Natl Acad. Sci. USA 113, 5958–5963 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freeman Rosenzweig, E. S. et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171, 148–162.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wunder, T., Cheng, S. L. H., Lai, S.-K., Li, H.-Y. & Mueller-Cajar, O. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nat. Commun. 9, 5076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. He, S., Crans, V. L. & Jonikas, M. C. The pyrenoid: the eukaryotic CO2-concentrating organelle. Plant Cell 35, 3236–3259 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramazanov, Z. et al. The induction of the CO–-concentrating mechanism is correlated with the formation of the starch sheath around the pyrenoid of Chlamydomonas reinhardtii. Planta 195, 210–216 (1994).

    Article  CAS  Google Scholar 

  12. Itakura, A. K. et al. A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 116, 18445–18454 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fei, C., Wilson, A. T., Mangan, N. M., Wingreen, N. S. & Jonikas, M. C. Modelling the pyrenoid-based CO2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops. Nat. Plants 8, 583–595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGrath, J. M. & Long, S. P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol. 164, 2247–2261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin, X. & Struik, P. C. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS. J. Exp. Bot. 68, 2345–2360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Irisarri, I. et al. Unexpected cryptic species among streptophyte algae most distant to land plants. Proc. R. Soc. B 288, 20212168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vaughn, K. C., Campbell, E. O., Hasegawa, J., Owen, H. A. & Renzaglia, K. S. The pyrenoid is the site of ribulose 1,5-bisphosphate carboxylase/oxygenase accumulation in the hornwort (Bryophyta: Anthocerotae) chloroplast. Protoplasma 156, 117–129 (1990).

    Article  CAS  Google Scholar 

  18. Smith, E. & Griffiths, H. A pyrenoid-based carbon-concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta 200, 203–212 (1996).

    Article  CAS  Google Scholar 

  19. Li, F.-W., Villarreal Aguilar, J. C. & Szövényi, P. Hornworts: an overlooked window into carbon-concentrating mechanisms. Trends Plant Sci. 22, 275–277 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Vaughn, K. C. et al. The anthocerote chloroplast: a review. N. Phytol. 120, 169–190 (1992).

    Article  Google Scholar 

  21. Li, F.-W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szövényi, P. et al. Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC Plant Biol. 15, 98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lafferty, D. J. et al. Biolistics-mediated transformation of hornworts and its application to study pyrenoid protein localization. J. Exp. Bot. 75, 4760–4771 (2024). erae243.

    Article  CAS  PubMed  Google Scholar 

  24. Schafran, P. et al. Pan-phylum genomes of hornworts reveal conserved autosomes but dynamic accessory and sex chromosomes. Nat. Plants (in the press).

  25. Barrett, J., Girr, P. & Mackinder, L. C. M. Pyrenoids: CO2-fixing phase separated liquid organelles. Biochim. Biophys. Acta Mol. Cell. Res. 1868, 118949 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Oh, Z. G. et al. A linker protein from a red-type pyrenoid phase separates with Rubisco via oligomerizing sticker motifs. Proc. Natl Acad. Sci. USA 120, e2304833120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burr, F. A. Phylogenetic transitions in the chloroplasts of the Anthocerotales. I. The number and ultrastructure of the mature plastids. Am. J. Bot. 57, 97–110 (1970).

    Article  Google Scholar 

  28. Mackinder, L. C. M. et al. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell 171, 133–147.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukherjee, A. et al. Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 116, 16915–16920 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ignatova, L., Rudenko, N., Zhurikova, E., Borisova-Mubarakshina, M. & Ivanov, B. Carbonic anhydrases in photosynthesizing cells of C3 higher plants. Metabolites 9, 73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Badger, M. R. & Price, G. D. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 369–392 (1994).

    Article  CAS  Google Scholar 

  32. Almagro Armenteros, J. J. et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2, e201900429 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jethva, J. et al. Realisation of a key step in the evolution of C4 photosynthesis in rice by genome editing. Preprint at bioRxiv https://doi.org/10.1101/2024.05.21.595093 (2024).

  34. Smith, E. C. & Griffiths, H. The role of carbonic anhydrase in photosynthesis and the activity of the carbon-concentrating-mechanism in bryophytes of the class Anthocerotae. N. Phytol. 145, 29–37 (2000).

    Article  CAS  Google Scholar 

  35. Sinetova, M. A., Kupriyanova, E. V., Markelova, A. G., Allakhverdiev, S. I. & Pronina, N. A. Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1817, 1248–1255 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Mitra, M. et al. The carbonic anhydrase gene families of Chlamydomonas reinhardtii. Can. J. Bot. 83, 780–795 (2005).

    Article  CAS  Google Scholar 

  37. Terentyev, V. V. & Shukshina, A. K. CAH3 from Chlamydomonas reinhardtii: unique carbonic anhydrase of the thylakoid lumen. Cells 13, 109 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y. & Spalding, M. H. LCIB in the Chlamydomonas CO2-concentrating mechanism. Photosynth. Res. 121, 185–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, S. et al. Structural insights into the LCIB protein family reveals a new group of β-carbonic anhydrases. Proc. Natl Acad. Sci. USA 113, 14716–14721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamano, T., Toyokawa, C., Shimamura, D., Matsuoka, T. & Fukuzawa, H. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii. Plant Physiol. 188, 1081–1094 (2021).

    Article  PubMed Central  Google Scholar 

  41. Chou, M.-L. et al. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J. 22, 2970–2980 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barrett, J. et al. A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage. Preprint bioRxiv https://doi.org/10.1101/2024.04.09.588658 (2024).

  43. Moromizato, R. et al. Pyrenoid proteomics reveals independent evolution of the CO2-concentrating organelle in chlorarachniophytes. Proc. Natl Acad. Sci. USA 121, e2318542121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aigner, H. et al. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 358, 1272–1278 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Feiz, L. et al. Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize. Plant Cell 24, 3435–3446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saschenbrecker, S. et al. Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco. Cell 129, 1189–1200 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, L. et al. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 186, 3499–3518.e14 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).

    CAS  Google Scholar 

  49. Kevekordes, K. et al. Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia 45, 442–449 (2006).

    Article  Google Scholar 

  50. Gee, C. W. & Niyogi, K. K. The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proc. Natl Acad. Sci. USA 114, 4537–4542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Steensma, A. K., Shachar-Hill, Y. & Walker, B. J. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae. Photosynth. Res. 158, 203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Villarreal, J. C. & Renner, S. S. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc. Natl Acad. Sci. USA 109, 18873–18878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanson, D., John Andrews, T. & Badger, M. R. Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerotophyta). Funct. Plant Biol. 29, 407–416 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Atkinson, N., Mao, Y., Chan, K. X. & McCormick, A. J. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts. Nat. Commun. 11, 6303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Atkinson, N., Stringer, R., Mitchell, S. R., Seung, D. & McCormick, A. J. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts. Proc. Natl Acad. Sci. USA 121, e2311013121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaste, J. A. M., Walker, B. J. & Shachar-Hill, Y. Reaction–diffusion modeling provides insights into biophysical carbon concentrating mechanisms in land plants. Plant Physiol. 196, 1374–1390 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gunadi, A., Li, F.-W. & Van Eck, J. Accelerating gametophytic growth in the model hornwort Anthoceros agrestis. Appl. Plant Sci. 10, e11460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Villarreal, J. C., Duckett, J. G. & Pressel, S. Morphology, ultrastructure and phylogenetic affinities of the single-island endemic Anthoceros cristatus Steph. (Ascension Island). J. Bryol. 39, 226–234 (2017).

    Article  Google Scholar 

  59. Sauret-Gueto, S. et al. Systematic tools for reprogramming plant gene expression in a simple model, Marchantia polymorpha. ACS Synth. Biol. 9, 864–882 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2023).

  61. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

  63. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Newman, A. M. & Cooper, J. B. XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. BMC Bioinform. 8, 382 (2007).

    Article  Google Scholar 

  65. Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  PubMed  Google Scholar 

  68. Monroe, M. E., Shaw, J. L., Daly, D. S., Adkins, J. N. & Smith, R. D. MASIC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC-MS(/MS) features. Comput. Biol. Chem. 32, 215–217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Polpitiya, A. D. et al. DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 24, 1556–1558 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, X. et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).

  72. Chen, C. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation grant no. MCB-2213841 to F.-W.L. and grant no. MCB-2213840 to L.H.G., an Environmental Molecular Sciences Laboratory User Grant to F.-W.L., a Triad Foundation Grant to F.-W.L. and a Schmittau-Novak Graduate Student Grant to T.A.R. We thank A. Skirycz, K. Eshenour, A. Hotto and D. Stern of Boyce Thompson Institute for providing access to tools and reagents to establish preliminary lysis and co-IP experiments. We thank R. Key at the University of Florida for the illustration in Fig. 6. We also thank C. Nicora and N. Tolic from the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory for technical assistance with mass spectrometry processing, M. Srivastava at the Boyce Thompson Institute Plant Cell Imaging Center for technical assistance with confocal imaging using the Leica TCS SP5 Laser Scanning Confocal Microscope and A. Roeder at Cornell University for providing access to the Zeiss LSM710 and Leica Stellaris 5 confocal microscopes. Finally, we thank the York Physics of Pyrenoids research community for feedback and Li and Gunn lab members for discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.A.R., L.H.G. and F.-W.L. conceived the project. T.A.R. made the gene constructs and carried out the confocal imaging. T.A.R., D.L. and X.X. performed the hornwort transformation. Z.G.O. designed the Rubisco antibody and optimized the lysis of hornwort thallus. T.A.R. and Z.G.O. performed the co-IP experiments. J.C.A.V. performed TEM. T.A.R., Z.G.O., L.H.G. and F.-W.L. analysed the data. T.A.R. and F.-W.L. wrote the manuscript with contributions and comments from all authors. L.H.G. and F.-W.L. secured the funding and supervised the project.

Corresponding authors

Correspondence to Laura H. Gunn or Fay-Wei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Nicky Atkinson, Manon Demulder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Tables 1 and 2.

Reporting Summary

Supplementary Video 1

Confocal Z-stack series of A. agrestis stably expressing RCA–mVenus (green). Pyrenoids that do not have obvious connections to one another are indicated by arrows. Chlorophyll autofluorescence is shown in blue.

Supplementary Video 2

Confocal Z-stack series of A. agrestis stably expressing RCA–mVenus (green). Pyrenoids that do not have obvious connections to one another are indicated by arrows. Chlorophyll autofluorescence is shown in blue.

Supplementary Video 3

Time-lapse video of A. agrestis stably expressing RCA–mVenus during cell division over 75 minutes. Chlorophyll autofluorescence is shown in blue and RCA–mVenus fluorescence in green.

Supplementary Video 4

Confocal Z-stack series of A. agrestis transiently expressing RCA–mScarlet (magenta) and CAH3–mVenus (green).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robison, T.A., Oh, Z.G., Lafferty, D. et al. Hornworts reveal a spatial model for pyrenoid-based CO2-concentrating mechanisms in land plants. Nat. Plants 11, 63–73 (2025). https://doi.org/10.1038/s41477-024-01871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-024-01871-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing