Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Realization of a gravity-resonance-spectroscopy technique

Abstract

Spectroscopy is a method typically used to assess an unknown quantity of energy by means of a frequency measurement. In many problems, resonance techniques1,2 enable high-precision measurements, but the observables have generally been restricted to electromagnetic interactions. Here we report the application of resonance spectroscopy to gravity. In contrast to previous resonance methods, the quantum mechanical transition is driven by an oscillating field that does not directly couple an electromagnetic charge or moment to an electromagnetic field. Instead, we observe transitions between gravitational quantum states when the wave packet of an ultra-cold neutron couples to the modulation of a hard surface as the driving force. The experiments have the potential to test the equivalence principle3 and Newton’s gravity law at the micrometre scale4,5.

Access to this article via Institution of Civil Engineers Library is not available.

This is a preview of subscription content, access via your institution

Access options

Access to this article via Institution of Civil Engineers Library is not available.

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of gravity resonance spectroscopy and its experimental realization in our current set-up.
Figure 2: Quantum states of an ultra-cold neutron bound in the gravity potential of the earth and a reflecting mirror.
Figure 3: Gravity resonance spectroscopy and excitation—experimental results.

Similar content being viewed by others

References

  1. Rabi, I. I., Millman, S., Kusch, P. & Zacharias, J. R. The molecular beam resonance method for measuring nuclear magnetic moments. The magnetic moments of 3Li6, 3Li7 and 9F19. Phys. Rev. 55, 526–535 (1939).

    Article  ADS  Google Scholar 

  2. Ramsey, N. F. Molecular Beams 1985 edn (paperback edition) 124–134 (Clarendon Press, 1956).

  3. Kajari, E., Harshman, N. L., Rasel, E. M., Stenholm, S., Süßmann, G. & Schleich, W. P. Inertial and gravitational mass in quantum mechanics. Appl. Phys. B 100, 43–60 (2010).

    Article  ADS  Google Scholar 

  4. Arkani-Hamed, N., Dimopolos, S. & Dvali, G. Phenomenology, astrophysics and cosmology of theories with submillimetre dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999).

    Article  ADS  Google Scholar 

  5. Antoniadis, I. Physics with large extra dimensions and non-newtonian gravity at sub-mm distances. Lect. Notes Phys. 631, 337–354 (2003).

    Article  ADS  Google Scholar 

  6. Ramsey, N. F. Experiments with separated oscillatory fields and hydrogen masers. Rev. Mod. Phys. 62, 541–552 (1990).

    Article  ADS  Google Scholar 

  7. Cronin, A., Schmiedmayer, J. & Pritchard, D. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    Article  ADS  Google Scholar 

  8. Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article  ADS  Google Scholar 

  9. Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006).

    Article  ADS  Google Scholar 

  10. De Kieviet, M., Dubbers, D., Schmidt, C., Scholz, D. & Spinola, U. 3He Spin Echo: New atomic beam technique for probing phenomena in the neV range. Phys. Rev. Lett 75, 1919–1922 (1995).

    Article  ADS  Google Scholar 

  11. Baker, C. A. et al. An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett 97, 131801 (2006).

    Article  ADS  Google Scholar 

  12. Abele, H., Jenke, T., Stadler, D. & Geltenbort, P. QuBounce: The dynamics of ultra-cold neutrons falling in the gravity potential of the Earth. Nucl. Phys. A827, 593c–595c (2009).

    Article  ADS  Google Scholar 

  13. Jenke, T., Stadler, D., Abele, H. & Geltenbort, P. Q-BOUNCE—experiments with quantum bouncing ultracold neutrons. Nucl. Instr. Meth. A 611, 318–323 (2009).

    Article  ADS  Google Scholar 

  14. Nesvizhevsky, V. V. et al. Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002).

    Article  ADS  Google Scholar 

  15. Nesvizhevsky, V. V. et al. Study of neutron quantum states in the gravity field. Eur. Phys. J. C40, 479–491 (2005).

    Article  ADS  Google Scholar 

  16. Westphal, A. et al. A quantum mechanical description of the experiment on the observation of gravitationally bound states. Eur. Phys. J. C51, 367–375 (2007).

    Article  ADS  Google Scholar 

  17. Kreuz, M. et al. A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. Nucl. Instr. Meth. Phys. Res. A 611, 326–330 (2009).

    Article  ADS  Google Scholar 

  18. Hamilton, W. A., Klein, A. G., Opat, G. I. & Timmins, P. A. Neutron diffraction by surface acoustic waves. Phys. Rev. Lett. 58, 2770–2773 (1987).

    Article  ADS  Google Scholar 

  19. Felber, J., Gähler, R., Rausch, C. & Golub, R. Matter waves at a vibrating surface: Transition from quantum-mechanical to classical behaviour. Phys. Rev. A53, 319–328 (1996).

    Article  ADS  Google Scholar 

  20. Steane, A., Szriftgiser, P., Desbiolles, P. & Dalibard, J. Phase modulation of atomic de Broglie waves. Phys. Rev. Lett. 74, 4972–4975 (1995).

    Article  ADS  Google Scholar 

  21. Bernet, S., Oberthaler, M. K., Abfalterer, R., Schmiedmayer, J. & Zeilinger, A. Coherent frequency shift of atomic matter waves. Phys. Rev. Lett. 77, 5160–5163 (1996).

    Article  ADS  Google Scholar 

  22. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. Atomic Mol. Opt. Phys. 42, 95–170 (2000).

    Article  ADS  Google Scholar 

  23. Callin, P. & Burgess, C. P. Deviations from Newton’s law in supersymmetric large extra dimensions. Nucl. Phys. B752, 60–79 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  24. Sundrum, R. Towards an effective particle-string resolution of the cosmological constant problem. J. High Energy Phys. 07, 001 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  25. Westphal, A., Abele, H. & Baeßler, S. Analytically derived limits on short-range fifth forces from quantum states of neutrons in the Earth’s gravitational field. Preprint at http://arxiv.org/abs/hep-ph/0703108.

  26. Baeßler, S., Nesvizhevsky, V. V., Protasov, K. V. & Voronin, A. Y. Constraint on the coupling of axionlike particles to matter via an ultracold neutron gravitational experiment. Phys. Rev. D 75, 075006 (2007).

    Article  ADS  Google Scholar 

  27. Abele, H., Baessler, S. & Westphal, A. in Quantum Gravity—from Theory to Experimental Search’ (ed. Lämmerzahl, C.) (Lect. Notes Phys., Vol. 631, Springer, 2003).

    Google Scholar 

  28. Nesvizhevsky, V. V. & Protasov, K. V. Constraints on non-Newtonian gravity from the experiment on neutron quantum states in the earth’s gravitational field. Classical Quant. Gravity 21, 4557–4566 (2004).

    Article  ADS  Google Scholar 

  29. Abele, H. The neutron. Its properties and basic interactions. Prog. Part. Nucl. Phys. 60, 1–81 (2008).

    Article  ADS  Google Scholar 

  30. Abele, H., Jenke, T., Leeb, H. & Schmiedmayer, J. Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phaseshifts. Phys. Rev. D 81, 065019 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Austrian Science Fund (FWF) under Contract No. I529-N20 and the German Research Foundation (DFG) as part of the Priority Programme (SPP) 1491 ‘Precision experiments in particle and astrophysics with cold and ultracold neutrons’, the DFG Excellence Initiative ‘Origin of the Universe’, and DFG support under Contract No. Ab128/2-1. The neutron mirrors were characterized by S-DH Sputterdünnschichttechnik, Heidelberg.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors made a substantial contribution to this work.

Corresponding author

Correspondence to Hartmut Abele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenke, T., Geltenbort, P., Lemmel, H. et al. Realization of a gravity-resonance-spectroscopy technique. Nature Phys 7, 468–472 (2011). https://doi.org/10.1038/nphys1970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1970

This article is cited by

Coming soon

We're working on ways to enable issue downloads.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing