Skip to main content
Log in

Understanding molecular mechanisms and miRNA-based targets in diabetes foot ulcers

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In today’s culture, obesity and overweight are serious issues that have an impact on how quickly diabetes develops and how it causes complications. For the development of more effective therapies, it is crucial to understand the molecular mechanisms underlying the chronic problems of diabetes. The most prominent effects of diabetes are microvascular abnormalities such as retinopathy, nephropathy, and neuropathy, especially diabetes foot ulcers, as well as macrovascular abnormalities such as heart disease and atherosclerosis. MicroRNAs (miRNAs), which are highly conserved endogenous short non-coding RNA molecules, have been implicated in several physiological functions recently, including the earliest stages of the disease. By binding to particular messenger RNAs (mRNAs), which cause mRNA degradation, translation inhibition, or even gene activation, it primarily regulates posttranscriptional gene expression. These molecules exhibit considerable potential as diagnostic biomarkers for disease and are interesting treatment targets. This review will provide an overview of the latest findings on the key functions that miRNAs role in diabetes and its complications, with an emphasis on the various stages of diabetic wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

DFU:

Diabetes foot ulcer

MMP:

Metalloproteinase

ECM:

Extracellular matrix

VEGF:

Vascular endothelial growth factor

DN:

Diabetes neuropathy

PDGF:

Platelet derived growth factor

EC  :

Extracellular

5-HT:

5-Hydroxytryptamine

WBC:

White blood cells

RBC:

Red blood cells

HMGB-1:

High mobility group box-1

TLR:

Toll-like receptor

NFKB:

Nuclear factor kappa-light-chain-enhancer of activated B-cells

IRAK-1:

Interleukin-1 receptor-associated kinase 1

TRAF6:

Tumor necrosis factor (TNF) receptor-associated factor-6

HIC-5:

Hydrogen peroxideinducible clone 5

HIC-5  :

Hydrogen peroxideinducible clone 5

PKC:

Protein kinase-C

T2D  :

Type 2 diabetess

DM:

Diabetes Mellitus

miRNA:

MacroRNA

mRNA  :

Messenger RNAs

AGE:

Advanced glycation end products

USD:

United States dollars

US:

United States

NGF:

Nerve growth factor

FGF2:

Fibroblast growth factor-2

DPN:

Diabetes peripheral neuropathy

DN:

Diabetes neuropathy

PVD  :

Peripheral vascular disease

PAD:

Peripheral artery disease

MRSA:

Methicillin-resistant staphylococcus aureus

M1:

Pro-inflammatory phenotype

M2:

Anti-inflammatory phenotype

FGF:

Fibroblast growth factor

DNA:

Deoxyribonucleic acid

tRNA:

Transfer RNA

rRNA:

Ribosomal RNA

RNAi  :

RNA inference

NETs:

Neutrophil extracellular trap

TIMPs:

tissue inhibitors of metalloproteinases

GTPase:

GTP-binding proteins

SHIP1:

SH-2 containing inositol 5’ polyphosphate 1

FIZZ1:

Inflammatory zone protein

BCL-6:

B-cell lymphoma 6

STAT4:

Signal transducer and activator of transcription 4

IFN- γ:

Interferon-gamma

NK Cells:

Natural killer cells

PDCD-4:

Programmed Cell Death 4

ZO-1:

Zonula occludens-1

DAXX:

Death-domain associated protein

GLUT-1:

Glucose transporter 1

PTEN:

 Phosphatase and tensin homolog

TSP-1:

Thrombospondin 1

TSP-2:

Thrombospondin-2

MTOR:

Mammalian target of rapamycin

IGF1R:

Insulin-like growth factor 1 receptor

SIRT-1:

Sirtuin (silent mating type information regulation 2 homolog) 1

SMAD-4:

 SMAD family member 4

E2F3:

E2F Transcription Factor 3

COL3A1:

Collagen, type III, alpha 1

COL4A1:

Collagen, type IV, alpha 1

COL4A2:

Collagen, type IV, alpha 2

COL5A1:

Collagen, type V, alpha 1

COLIA1:

Collagen, type I, alpha 1

ZEB2:

Zinc Finger E-Box Binding Homeobox 2

ZEB1:

Zinc Finger E-Box Binding Homeobox 1

HBEGF:

Heparin-binding EGF-like growth factor

qPCR:

Quantitative polymerase chain reaction

MSC:

Mesenchymal stem cells

HBOT:

Hyperbaric oxygen therapy

NPWT:

Negative pressure wound therapy

ESWT:

Extracorporeal shock wave therapy

ROS:

Reactive oxygen species

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IL-8:

Interleukin-8

IL-10:

Interlukin-10

IGF-1:

Insulin-like growth factor-1

TNF-α:

Tumour necrosis factor

TGF-β:

Transforming growth factor beta

siRNA:

Short interfering RNA or Silencing RNA

snoRNA  :

Small nucleolar RNA

RNA:

Ribonucleic acid

References

  1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW et al (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    CAS  PubMed  Google Scholar 

  2. Tuttolomondo A, Maida C, Pinto A (2015) Diabetic foot syndrome as a possible cardiovascular marker in diabetic patients. J Diabetes Res 2015:268390

    PubMed  PubMed Central  Google Scholar 

  3. Nellaiappan K, Preeti K, Khatri DK, Singh SB (2022) Diabetic complications: an update on pathobiology and therapeutic strategies. Current diabetes reviews. 18(1):31-44

  4. Bhoomika, Sherkhane Gundu, Chayanika Anika, Sood Dharmendra Kumar, Khatri Shashi Bala, Singh (2021) Mitochondrial remodelling—a vicious cycle in diabetic complications Molecular Biology Reports 48(5):4721–4731 https://doi.org/10.1007/s11033-021-06408-8

  5. Donnelly R, Emslie-Smith AM, Gardner ID, Morris AD (2000) ABC of arterial and venous disease: vascular complications of diabetes. BMJ (Clinical Research ed) 320(7241):1062–1066

    CAS  PubMed  Google Scholar 

  6. Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N (2022) A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. Nanoscale Adv 4(11):2367–2398

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:R17–R29

    CAS  PubMed  Google Scholar 

  8. Kurkipuro J, Mierau I, Wirth T, Samaranayake H, Smith W, Kärkkäinen HR et al (2022) Four in one-combination therapy using live Lactococcus lactis expressing three therapeutic proteins for the treatment of chronic non-healing wounds. PLoS ONE 17(2):e0264775

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nandy M (2022) Nandy. Relationship between RandD and financial performance in Indian pharmaceutical industry. Springer, Berlin

    Google Scholar 

  10. Bonnet JB, Nicolet G, Papinaud L, Avignon A, Duflos C, Sultan A (2022) Effects of social deprivation and healthcare access on major amputation following a diabetic foot Ulcer in a French administrative area: analysis using the French claim data. Diabet Med: J Br Diabet Assoc 39(6):e14820

    Google Scholar 

  11. de Miguel-Yanes JM, Jimenez-Garcia R, de Miguel-Diez J, Hernández-Barrera V, Carabantes-Alarcon D, Zamorano-Leon JJ et al (2022) Impact of type 2 diabetes mellitus on the incidence and outcomes of COVID-19 needing hospital admission according to sex: retrospective cohort study using hospital discharge data in Spain, year 2022. J Clin Med. 11(9):2654

    PubMed  PubMed Central  Google Scholar 

  12. Ko KI, Sculean A, Graves DT (2021) Diabetic wound healing in soft and hard oral tissues. Trans Res: The J Lab Clin Med 236:72–86

    CAS  Google Scholar 

  13. Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM (2022) Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front Bioeng Biotechnol 10:821852

    PubMed  PubMed Central  Google Scholar 

  14. Nahar N, Mohamed S, Mustapha NM, Fong LSJJD, Disorders M (2022) Protective effects of Labisia pumila against neuropathy in a diabetic rat model. J Diabetes Metab Disord 21(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh K, Kumar J (2022) Current status of apple scab disease and management strategies in Uttaranchal Himalayas. Apple Academic Press, New Jersey, pp 1–29

    Google Scholar 

  16. Dhanalakshmi B, Shijith K, Sharma PJMJDDPV (2022) A prospective interventional study to assess the advantage of premedication with sublingual nitroglycerin in evaluation of peripheral vascular disease with computed tomography peripheral angiography. Med J Dr. DY Patil Univ 15(3):359

    Google Scholar 

  17. Alven S, Peter S, Mbese Z, Aderibigbe BAJP (2022) Polymer-based wound dressing materials loaded with bioactive agents: potential materials for the treatment of diabetic wounds. Polymers 14(4):724

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel BK, Patel KH, Huang RY, Lee CN, Moochhala SMJIJMS (2022) The gut-skin microbiota axis and its role in diabetic wound healing—a rev based curr literature. Int J Mol Sci 23(4):2375

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bandyk DF (2018) The diabetic foot: pathophysiology, evaluation, and treatment. Semin Vasc Surg 31(2–4):43–48

    PubMed  Google Scholar 

  20. Li M, Huang S, Zhang Y, Song Z, Fu H, Lin Z et al (2022) Regulation of the unfolded protein response transducer IRE1α by SERPINH1 aggravates periodontitis with diabetes mellitus via prolonged ER stress. Cell Signal 91:110241

    CAS  PubMed  Google Scholar 

  21. Mudigonda J, Chenicheri S, Ramachandran R (2022) Tissue engineering: Current Status and Challenges. Academic Press, pp 101–122

  22. Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ (2022) Signaling mechanisms and pharmacological modulators governing diverse aquaporin functions in human health and disease. Int J Mol Sci 23(3):1388

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bannon P, Wood S, Restivo T, Campbell L, Hardman MJ, Mace KAJD et al (2013) Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Dis Models Mech 6(6):1434–1447

    CAS  Google Scholar 

  24. Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid RJD (2000) Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes 49(9):1451–1458

    CAS  PubMed  Google Scholar 

  25. Loot M, Kenter S, Au F, van Galen WJEJCB, Middelkoop E, Bos JD, Mekkes JR (2002) JR fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol 81:153

    PubMed  Google Scholar 

  26. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    CAS  PubMed  Google Scholar 

  27. Rathinam VA, Fitzgerald KA (2016) Inflammasome complexes: emerging mechanisms and effector functions. Cell 165(4):792–800

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng F, Shen Y, Mohanasundaram P, Lindström M, Ivaska J, Ny T et al (2016) Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β-Slug signaling. Proc Natl Acad Sci USA 113(30):E4320–E4327

    CAS  PubMed  PubMed Central  Google Scholar 

  29. DiPietro LA (2016) Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 100(5):979–984

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mutschler W (2012) Physiology and pathophysiology of wound healing of wound defects. Unfallchirurg 115(9):767–773

    CAS  PubMed  Google Scholar 

  31. Soliman AM, Das S, Abd Ghafar N, Teoh SL (2018) Role of MicroRNA in proliferation phase of Wound Healing. Front Genet 9:38

    PubMed  PubMed Central  Google Scholar 

  32. Karmaker M, Sanyal SK, Sultana M, Hossain MA (2016) Association of bacteria in diabetic and non-diabetic foot Infection – an investigation in patients from Bangladesh. J Infect Public Health 9(3):267–277

    PubMed  Google Scholar 

  33. Tecilazich F, Dinh TL, Veves A (2013) Emerging drugs for the treatment of diabetic ulcers. Expert Opin Emerg Drugs 18(2):207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Knighton DR, Halliday B, Hunt TK (1986) Oxygen as an antibiotic. A comparison of the effects of inspired oxygen concentration and antibiotic administration on in vivo bacterial clearance. Arch surg 121(2):191–195

    CAS  PubMed  Google Scholar 

  35. Löndahl M, Katzman P, Nilsson A, Hammarlund C (2010) Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care 33(5):998–1003

    PubMed  PubMed Central  Google Scholar 

  36. Stojadinovic A, Elster EA, Anam K, Tadaki D, Amare M, Zins S et al (2008) Angiogenic response to extracorporeal shock wave treatment in murine skin isografts. Angiogenesis 11(4):369–380

    PubMed  Google Scholar 

  37. Saggini R, Figus A, Troccola A, Cocco V, Saggini A, Scuderi N (2008) Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol 34(8):1261–1271

    CAS  PubMed  Google Scholar 

  38. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89

    CAS  PubMed  Google Scholar 

  39. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Comb microRNA target predictions. Nat Genet 37(5):495–500

    CAS  PubMed  Google Scholar 

  40. Maqbool R, Ul Hussain M (2014) MicroRNAs and human diseases: diagnostic and therapeutic potential. Cell Tissue Res 358(1):1–15

    CAS  PubMed  Google Scholar 

  41. Ying SY, Chang DC, Lin SL (2008) The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 38(3):257–268

    CAS  PubMed  Google Scholar 

  42. Verdel A, Moazed D (2005) RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett 579(26):5872–5878

    CAS  PubMed  Google Scholar 

  43. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596

    CAS  PubMed  Google Scholar 

  44. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Qin B, Peng Q, Dong H, Lei L, Wu S (2023) Non-coding RNAs in diabetic foot ulcer- a focus on infected wounds. Diab/Metab Res Rev. https://doi.org/10.1002/dmrr.3740

    Article  Google Scholar 

  46. Tian M, Dong J, Yuan B, Jia H (2021) Identification of potential circRNAs and circRNA-miRNA-mRNA regulatory network in the development of diabetic foot ulcers by integrated bioinformatics analysis. Int Wound J 18(3):323–331

    PubMed  Google Scholar 

  47. Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z et al (2020) The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via microRNA-152-3p. Mol Therapy Nucleic Acids 19:814–826

    CAS  Google Scholar 

  48. Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ (2014) Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes 63(3):1103–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Eming SA, Wynn TA, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356(6342):1026–1030

    CAS  PubMed  Google Scholar 

  50. Tanaka K, Kim SE, Yano H, Matsumoto G, Ohuchida R, Ishikura Y et al (2017) MiR-142 is required for Staphylococcus aureus clearance at skin wound sites via small GTPase-Mediated regulation of the neutrophil actin cytoskeleton. J Invest Dermatol 137(4):931–940

    CAS  PubMed  Google Scholar 

  51. Xu J, Wu W, Zhang L, Dorset-Martin W, Morris MW, Mitchell ME et al (2012) The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes 61(11):2906–2912

    CAS  PubMed  PubMed Central  Google Scholar 

  52. van Solingen C, Araldi E, Chamorro-Jorganes A, Fernández-Hernando C, Suárez Y (2014) Improved repair of dermal wounds in mice lacking microRNA-155. J Cell Mol Med 18(6):1104–1112

    PubMed  PubMed Central  Google Scholar 

  53. Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A et al (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31(6):965–973

    CAS  PubMed  Google Scholar 

  54. Li D, Wang A, Liu X, Meisgen F, Grünler J, Botusan IR et al (2015) MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. J Clin Investig 125(8):3008–3026

    PubMed  PubMed Central  Google Scholar 

  55. Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN (2011) MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J: Off Publ Federation Am Soc Exp Biol 25(2):544–560

    CAS  Google Scholar 

  56. Liechty C, Hu J, Zhang L, Liechty KW, Xu J (2020) Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds. Int J Mol Sci 21(9):3328

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Herter EK, Xu Landén N (2017) Non-coding RNAs: new players in skin wound healing. Adv Wound Care 6(3):93–107

    Google Scholar 

  58. Dangwal S, Stratmann B, Bang C, Lorenzen JM, Kumarswamy R, Fiedler J et al (2015) Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating MicroRNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol 35(6):1480–1488

    CAS  PubMed  Google Scholar 

  59. Ghatak S, Chan YC, Khanna S, Banerjee J, Weist J, Roy S et al (2015) Barrier function of the repaired skin is disrupted following arrest of dicer in keratinocytes. Mol Therapy: J Am Soc Gene Therapy 23(7):1201–1210

    CAS  Google Scholar 

  60. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L et al (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16(8):909–914

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M (2012) MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J 9(4):355–361

    CAS  PubMed  Google Scholar 

  62. Liu X, Abraham JM, Cheng Y, Wang Z, Wang Z, Zhang G et al (2018) Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Therapy Nucleic Acids 13:312–321

    CAS  PubMed  Google Scholar 

  63. Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M et al (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circul Res 113(11):1231–1241

    CAS  Google Scholar 

  64. Liu B, Wu X, Liu B, Wang C, Liu Y, Zhou Q et al (2012) MiR-26a enhances Metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochim Biophys Acta 1822(11):1692–1704

    CAS  PubMed  Google Scholar 

  65. Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q et al (2014) MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 34(1):99–109

    PubMed  Google Scholar 

  66. Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D et al (2013) MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS ONE 8(5):e64434

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Viticchiè G, Lena AM, Cianfarani F, Odorisio T, Annicchiarico-Petruzzelli M, Melino G et al (2012) MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis 3(11):e435

    PubMed  PubMed Central  Google Scholar 

  68. An J, Chen X, Chen W, Liang R, Reinach PS, Yan D et al (2015) MicroRNA expression profile and the role of miR-204 in corneal wound healing. Investig Ophthalmol Vis Sci 56(6):3673–3683

    CAS  Google Scholar 

  69. Wang T, Zhao N, Long S, Ge L, Wang A, Sun H et al (2016) Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5. Biochim Biophys Acta 1862(8):1443–1452

    CAS  PubMed  Google Scholar 

  70. Huang X, Zuo J (2014) Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim Biophys Sin 46(3):220–232

    CAS  PubMed  Google Scholar 

  71. Okizaki S, Ito Y, Hosono K, Oba K, Ohkubo H, Amano H et al (2015) Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomed Pharmacother Biomed Pharmacother 70:317–325

    CAS  PubMed  Google Scholar 

  72. Fahs F, Bi X, Yu FS, Zhou L, Mi QS (2015) New insights into microRNAs in skin wound healing. IUBMB Life 67(12):889–896

    CAS  PubMed  Google Scholar 

  73. Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM (2014) MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS ONE 9(12):e115596

    PubMed  PubMed Central  Google Scholar 

  74. Guo J, Lin Q, Shao Y, Rong L, Zhang D (2017) miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway. Can J Physiol Pharmacol 95(4):437–442

    CAS  PubMed  Google Scholar 

  75. Bi S, Chai L, Yuan X, Cao C, Li S (2017) MicroRNA-98 inhibits the cell proliferation of human hypertrophic scar fibroblasts via targeting Col1A1. Biol Res 50(1):22

    PubMed  PubMed Central  Google Scholar 

  76. Singh K, Sinha M, Pal D, Tabasum S, Gnyawali SC, Khona D et al (2019) Cutaneous epithelial to mesenchymal transition activator ZEB1 regulates wound angiogenesis and closure in a glycemic status-dependent manner. Diabetes 68(11):2175–2190

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Diepenbruck M, Tiede S, Saxena M, Ivanek R, Kalathur RKR, Lüönd F et al (2017) Mir-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis. Nat Commun 8(1):1168

    PubMed  PubMed Central  Google Scholar 

  78. Zhao P, Wang S, Zhou Y, Zheng H, Zhao G (2017) MicroRNA-185 regulates spinal cord injuries induced by thoracolumbar spine compression fractures by targeting transforming growth factor-β1. Exp Ther Med 13(3):1127–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ye J, Kang Y, Sun X, Ni P, Wu M, Lu SJT (2017) MicroRNA-155 inhibition promoted wound healing in diabetic rats. J Investig Dermatol 16(2):74–84

    CAS  Google Scholar 

  80. Li X, Li D, Wang A, Chu T, Lohcharoenkal W, Zheng X et al (2017) MicroRNA-132 with therapeutic potential in chronic wounds. J Investig Dermatol 137(12):2630–2638

    CAS  PubMed  Google Scholar 

  81. Meisgen F, Xu Landén N, Bouez C, Zuccolo M, Gueniche A, Ståhle M et al (2014) Activation of toll-like receptors alters the microRNA expression profile of keratinocytes. Exp Dermatol 23(4):281–283

    CAS  PubMed  Google Scholar 

  82. Pichu S, Vimalraj S, Viswanathan V (2021) Impact of microRNA-210 on wound healing among the patients with diabetic foot ulcer. PLoS ONE 16(7):e0254921

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober AJA (2013) MicroRNA-126,-145, and-155: a therapeutic triad in atherosclerosis? Thromb Vasc Biol 33(3):449–454

    CAS  Google Scholar 

  84. Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A et al (2010) E-cadherin expression is regulated by miR-192/215 by a mechanism that is Independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59(7):1794–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Reviews Endocrinol 9(9):513–521

    CAS  Google Scholar 

  87. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37(5):1375–1383

    CAS  PubMed  Google Scholar 

  88. Yang X, Wang J, Guo SL, Fan KJ, Li J, Wang YL et al (2011) miR-21 promotes keratinocyte migration and re-epithelialization during wound healing. Int J Biol Sci 7(5):685–690

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circul Res 107(6):810–817

    CAS  Google Scholar 

  90. Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR et al (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56(10):2203–2212

    CAS  PubMed  Google Scholar 

  91. Al-Wahbi AM (2010) Impact of a diabetic foot care education program on lower limb amputation rate. Vasc Health Risk Manag 6:923–934

    PubMed  PubMed Central  Google Scholar 

  92. Martí-Carvajal AJ, Gluud C, Nicola S, Simancas-Racines D, Reveiz L, Oliva P et al (2015) Growth factors for treating diabetic foot ulcers. Cochrane Database Syst Rev 2015(10):Cd008548

    PubMed  PubMed Central  Google Scholar 

  93. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al (2005) Silencing of microRNAs in vivo with ‘antagomirs.’ Nature 438(7068):685–689

    PubMed  Google Scholar 

  94. Moura J, da Silva L, Cruz MT, Carvalho E (2013) Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing. Arch Dermatol Res 305(7):557–569

    CAS  PubMed  Google Scholar 

  95. Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H (2013) miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain 136(Pt 9):2738–2750

    PubMed  Google Scholar 

  96. Tellechea A, Leal E, Veves A, Carvalho EJTOC, Journal V (2010) Inflammatory and angiogenic abnormalities in diabetic wound healing: role of neuropeptides and therapeutic perspectives. Open Circ Vasc J. https://doi.org/10.2174/1874382601003010043

    Article  Google Scholar 

  97. Kovacs B, Lumayag S, Cowan C, Xu S (2011) MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investig Ophthalmol Vis Sci 52(7):4402–4409

    CAS  Google Scholar 

  98. Alipour MR, Khamaneh AM, Yousefzadeh N, Mohammad-nejad D, Soufi FGJM (2013) Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol biol Rep 40:6477–6483

    CAS  PubMed  Google Scholar 

  99. Kasiewicz LN, Whitehead KA (2019) Lipid nanoparticles silence Tumor necrosis factor α to improve wound healing in diabetic mice. Bioeng Translational Med 4(1):75–82

    CAS  Google Scholar 

Download references

Acknowledgements

The Department of Science and Technology, Ministry of Science and Technology (DST), Government of India, as well as the Department of Pharmaceuticals (DoP), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India, are all acknowledged by the authors for providing the necessary facilities, infrastructure, and financial support.

Funding

Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Govt. of India, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, India, and also acknowledge the Department of Science and Technology, Ministry of Science and Technology (DST), Govt of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neelesh Kumar Mehra or Dharmendra Kumar Khatri.

Ethics declarations

Conflict of interest

All authors declares no Conflict of interest.

Human and animal participants

There are no studies by any of the writers in this article that used human or animal subjects.

Consent to participate

Not applicable.

Consent for publication

All the authors read and reviewed the manuscript and gave their consent for communication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuradha, U., Mehra, N.K. & Khatri, D.K. Understanding molecular mechanisms and miRNA-based targets in diabetes foot ulcers. Mol Biol Rep 51, 82 (2024). https://doi.org/10.1007/s11033-023-09074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11033-023-09074-0

Keywords

Profiles

  1. Dharmendra Kumar Khatri