Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Information Sciences
  3. Article

Ferroelectric materials, devices, and chips technologies for advanced computing and memory applications: development and challenges

  • Review
  • Open access
  • Published: 26 May 2025
  • Volume 68, article number 160401, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Information Sciences Aims and scope Submit manuscript
Ferroelectric materials, devices, and chips technologies for advanced computing and memory applications: development and challenges
Download PDF
  • Xiao Yu1,14,
  • Ni Zhong2,
  • Yan Cheng2,
  • Tianjiao Xin2,
  • Qing Luo3,
  • Tiancheng Gong3,
  • Jiezhi Chen4,
  • Jixuan Wu4,
  • Ran Cheng5,
  • Zhiyuan Fu6,7,
  • Kechao Tang7,
  • Jin Luo7,
  • Tianling Ren8,
  • Fei Xue9,
  • Lin Chen10,
  • Tianyu Wang10,
  • Xueqing Li11,
  • Xiuyan Li12,
  • Ping Wang13,
  • Xinqiang Wang13,
  • Jie Sun10,
  • Anquan Jiang10,
  • Peiyuan Du1,14,
  • Bing Chen1,14,
  • Chengji Jin1,14,
  • Jiajia Chen1,14,
  • Haoji Qian1,14,
  • Wei Mao1,14,
  • Siying Zheng1,14,
  • Huan Liu1,14,
  • Haiwen Xu1,14,
  • Can Liu1,14,
  • Zhihao Shen1,14,
  • Xiaoxi Li1,14,
  • Bochang Li1,14,
  • Zheng-Dong Luo1,14,
  • Jiuren Zhou1,14,
  • Yan Liu1,14,
  • Yue Hao1,14 &
  • …
  • Genquan Han1,14,15 
  • 2018 Accesses

  • 2 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

Hafnium (Hf) oxide-based ferroelectric materials have emerged as a transformative platform for next-generation non-volatile memory and advanced computing technologies. This review comprehensively examines the development, challenges, and applications of HfO2 ferroelectrics, emphasizing their CMOS compatibility, scalability, and robust polarization at nanoscale dimensions. Breakthroughs in doping strategies, stress engineering, and VO control have stabilized the metastable orthorhombic phase, enabling high-performance devices such as ferroelectric RAM (FeRAM), ferroelectric field-effect transistors (FeFETs), and ferroelectric tunnel junctions (FTJs). These devices offer ultrafast switching, low power consumption, and multi-level storage, driving innovations in neuromorphic computing, in-memory processing, and cryogenic systems; nonetheless, they face ongoing challenges in reliability, such as fatigue and imprint effects, and scalability at sub-5 nm technology nodes. Emerging frontiers, such as wurtzite-structured nitrides (e.g., AlScN) and antiferroelectric ZrO2-based systems, have garnered significant attention due to their exceptionally high remanent polarization and promising potential for enhanced endurance, respectively. Further addressing the reliability issues of these emerging ferroelectric materials and the challenges associated with large-scale integration processes through interdisciplinary efforts will unlock the full potential of ferroelectric technologies, positioning them as pivotal enablers of post-Moore computing architectures and sustainable AI-driven applications.

Article PDF

Download to read the full article text

Similar content being viewed by others

Nonvolatile Field-Effect Transistors Using Ferroelectric-Doped HfO2 Films

Chapter © 2020

Nonvolatile Field-Effect Transistors Using Ferroelectric Doped HfO2 Films

Chapter © 2016

A new era of ferroelectric thin films for nonvolatile memories

Article Open access 16 September 2025

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Computer Hardware
  • Electronic Materials
  • Ferroelectrics and Multiferroics
  • Perovskites
  • Semiconductors
  • Materials for Devices
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Keshavarzi A, Ni K, van Hoek W D, et al. Ferro electronics for edge intelligence. IEEE Micro, 2020, 40: 33–48

    Article  Google Scholar 

  2. Zhang W, Gao B, Tang J, et al. Neuro-inspired computing chips. Nat Electron, 2020, 3: 371–382

    Article  Google Scholar 

  3. Xi Y, Gao B, Tang J, et al. In-memory learning with analog resistive switching memory: a review and perspective. Proc IEEE, 2021, 109: 14–42

    Article  Google Scholar 

  4. Zhu J, Zhang T, Yang Y, et al. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev, 2020, 7: 011312

    Article  Google Scholar 

  5. Park M H, Kwon D, Schroeder U, et al. Binary ferroelectric oxides for future computing paradigms. MRS Bull, 2021, 46: 1071–1079

    Article  Google Scholar 

  6. Khan A I, Keshavarzi A, Datta S. The future of ferroelectric field-effect transistor technology. Nat Electron, 2020, 3: 588–597

    Article  Google Scholar 

  7. Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide: CMOS-compatible ferroelectric field effect transistors. In: Proceedings of International Electron Devices Meeting (IEDM), 2011

    Google Scholar 

  8. Lyu X, Si M, Shrestha P R, et al. First direct measurement of sub-nanosecond polarization switching in ferroelectric hafnium zirconium Oxide. IEEE Electron Device Lett, 2021, 42: 716–719

    Google Scholar 

  9. Jerry M, Chen P Y, Zhang J, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. In: Proceedings of International Electron Devices Meeting (IEDM), 2017

    Google Scholar 

  10. Dünkel S, Trentzsch M, Richter R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. In: Proceedings of International Electron Devices Meeting (IEDM), 2017

    Google Scholar 

  11. Zhang Z H, Tian G L, Huo J L, et al. Recent progress of hafnium oxide-based ferroelectric devices for advanced circuit applications. Sci China Inf Sci, 2023, 66: 200405

    Article  Google Scholar 

  12. Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99: 102903

    Article  Google Scholar 

  13. Park M H, Lee Y H, Mikolajick T, et al. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun, 2018, 8: 795–808

    Article  Google Scholar 

  14. Liao J, Dai S, Peng R C, et al. HfO2-based ferroelectric thin film and memory device applications in the post-Moore era: a review. Fundamental Res, 2023, 3: 332–345

    Article  Google Scholar 

  15. Park M H, Lee D H, Yang K, et al. Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices. J Mater Chem C, 2020, 8: 10526–10550

    Article  Google Scholar 

  16. Chen J, Qian H, Zhang H, et al. Physical origin of recoverable ferroelectric fatigue and recovery for doped-HfO2: toward enduranceimmunity. In: Proceedings of International Electron Devices Meeting (IEDM), 2023

    Google Scholar 

  17. Chen J, Xu J, Gong Z, et al. Controlling the ferroelectricity of doped-HfO2 via reversible migration of oxygen vacancy. IEEE Trans Electron Dev, 2023, 70: 1789–1794

    Article  Google Scholar 

  18. Hoffmann M, Tan A J, Shanker N, et al. Fast read-after-write and depolarization fields in high endurance n-type ferroelectric FETs. IEEE Electron Device Lett, 2022, 43: 717–720

    Article  Google Scholar 

  19. Jin C, Xu J, Gu J, et al. Disturb-free operations of multilevel cell ferroelectric FETs for N and applications. IEEE Trans Electron Dev, 2023, 70: 1653–1658

    Article  Google Scholar 

  20. Qian H, Shen R, Wang J, et al. Boost antiferroelectricity in ZrO2-based capacitors by ozone treatment on bottom electrode. IEEE Trans Electron Dev, 2024, 71: 8016–8020

    Article  Google Scholar 

  21. Ma M, Lin G, Xu J, et al. Monolithic 3D integration of 1T1C AFeRAM with InGaZnO/InO dual-channel FET and AFE ZrO2 capacitor for low-power and high-density embedded nonvolatile memory. IEEE Electron Device Lett, 2025, 46: 183–186

    Article  Google Scholar 

  22. Xu J, Ma M, Shen R, et al. Anti-ferroelectric ZrO2 capacitors with ultralow operating voltage (<1.2 V) and improved endurance toward logic compatible eDRAM. IEEE Trans Electron Dev, 2024, 71: 5767–5770

    Article  Google Scholar 

  23. Fichtner S, Wolff N, Lofink F, et al. AlScN: a III–V semiconductor based ferroelectric. J Appl Phys, 2019, 125: 114103

    Article  Google Scholar 

  24. Schroeder U, Hwang C, Funakubo H. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Amsterdam: Elsevier, 2019

    Google Scholar 

  25. Cao J, Shi S, Zhu Y, et al. An overview of ferroelectric hafnia and epitaxial growth. Phys Status Solidi-R, 2021, 15: 2100025

    Article  Google Scholar 

  26. Lee H J, Lee M, Lee K, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science, 2020, 369: 1343–1347

    Article  Google Scholar 

  27. Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model. J Appl Phys, 2015, 117: 134109

    Article  Google Scholar 

  28. Huang J, Yang L, Wei L, et al. Influence of oxygen pressure on the ferroelectricity of pulsed laser deposition fabricated epitaxial Y-doped HfO2. J Appl Phys, 2024, 136: 014303

    Article  Google Scholar 

  29. Wei L, Guan Z, Tong W, et al. Ambient moisture-induced self alignment of polarization in ferroelectric hafnia. Adv Sci, 2024, 11: 2410354

    Article  Google Scholar 

  30. Wei Y, Nukala P, Salverda M, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat Mater, 2018, 17: 1095–1100

    Article  Google Scholar 

  31. Wang Y, Tao L, Guzman R, et al. A stable rhombohedral phase in ferroelectric Hf(Zr)1+xO2 capacitor with ultralow coercive field. Science, 2023, 381: 558–563

    Article  Google Scholar 

  32. Kim S J, Narayan D, Lee J G, et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stressinduced crystallization at low thermal budget. Appl Phys Lett, 2017, 111: 242901

    Article  Google Scholar 

  33. Karbasian G, Reis R D, Yadav A K, et al. Stabilization of ferroelectric phase in tungsten capped Hf0.8Zr0.2O2. Appl Phys Lett, 2017, 111: 022907

    Article  Google Scholar 

  34. Zhang Y, Fan Z,Wang D, et al. Enhanced ferroelectric properties and insulator-metal transition-induced shift of polarizationvoltage hysteresis loop in VOx-capped Hf0.5Zr0.5O2 thin films. ACS Appl Mater Interfaces, 2020, 12: 40510–40517

    Article  Google Scholar 

  35. Estandía S, Dix N, Gazquez J, et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress. ACS Appl Electron Mater, 2019, 1: 1449–1457

    Article  Google Scholar 

  36. Xu X, Huang F T, Qi Y, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat Mater, 2021, 20: 26–832

    Article  Google Scholar 

  37. Zhu T, Ma L, Deng S, et al. Progress in computational understanding of ferroelectric mechanisms in HfO2. npj Comput Mater, 2024, 10: 188

    Article  Google Scholar 

  38. Ma L Y, Liu S. Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2. Phys Rev Lett, 2023, 130: 096801

    Article  Google Scholar 

  39. Xu L, Nishimura T, Shibayama S, et al. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. J Appl Phys, 2017, 122: 124104

    Article  Google Scholar 

  40. Müller J, Böscke T S, Schröder U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett, 2012, 12: 4318–4323

    Article  Google Scholar 

  41. Chernikova A G, Kuzmichev D S, Negrov D V, et al. Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks. Appl Phys Lett, 2016, 108: 242905

    Article  Google Scholar 

  42. Mueller S, Mueller J, Singh A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater, 2012, 22: 2412–2417

    Article  Google Scholar 

  43. Yun Y, Buragohain P, Li M, et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat Mater, 2022, 21: 903–909

    Article  Google Scholar 

  44. Mueller S, Adelmann C, Singh A, et al. Ferroelectricity in Gd-doped HfO2 thin films. ECS J Solid State Sci Technol, 2012, 1: 123–126

    Article  Google Scholar 

  45. Schenk T, Mueller S, Schroeder U, et al. Strontium doped hafnium oxidethin films: wide process window for ferroelectric memories. In: Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2013

    Google Scholar 

  46. Starschich S, Boettger U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2. J Mater Chem C, 2017, 5: 333–338

    Article  Google Scholar 

  47. Yao Y, Zhou D, Li S, et al. Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. J Appl Phys, 2019, 126: 154103

    Article  Google Scholar 

  48. Islamov D R, Perevalov T V. Effect of oxygen vacancies on the ferroelectric Hf0.5Zr0.5O2 stabilization: DFT simulation. Microelectron Eng, 2019, 216: 111041

    Article  Google Scholar 

  49. Pal A, Narasimhan V K, Weeks S, et al. Enhancing ferroelectricity in dopant-free hafnium oxide. Appl Phys Lett, 2016, 110: 022903

    Article  Google Scholar 

  50. Starschich S, Menzel S, Böttger U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl Phys Lett, 2016, 108: 032903

    Article  Google Scholar 

  51. Mittmann T, Materano M, Chang S C, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance. In: Proceedings of International Electron Devices Meeting (IEDM), 2020

    Google Scholar 

  52. Mittmann T, Materano M, Lomenzo P D, et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Adv Mater Inter, 2019, 6: 1900042

    Article  Google Scholar 

  53. Glinchuk M D, Morozovska A N, Lukowiak A, et al. Possible electrochemical origin of ferroelectricity in HfO2 thin films. J Alloys Compd, 2020, 830: 153628

    Article  Google Scholar 

  54. Wei W, Ma X, Wu J, et al. Spontaneous polarization enhancement in ferroelectric Hf0.5Zr0.5O2 using atomic oxygen defects engineering: an ab initio study. Appl Phys Lett, 2019, 115: 092905

    Article  Google Scholar 

  55. Mittmann T, Michailow M, Lomenzo P D, et al. Stabilizing the ferroelectric phase in HfO2-based films sputtered from ceramic targets under ambient oxygen. Nanoscale, 2021, 13: 912–921

    Article  Google Scholar 

  56. Zhou Y, Zhang Y K, Yang Q, et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Comput Mater Sci, 2019, 167: 143–150

    Article  Google Scholar 

  57. Jiang P, Luo Q, Xu X, et al. Wake-up effect in HfO2-based ferroelectric films. Adv Elect Mater, 2021, 7: 2000728

    Article  Google Scholar 

  58. Mehmood F, Mikolajick T, Schroeder U. Wake-up mechanisms in ferroelectric lanthanum-doped Hf0.5Zr0.5O2 thin films. Physica Status Solidi (a), 2020, 217: 2000281

    Article  Google Scholar 

  59. Chen J, Jin C, Yu X, et al. Impact of oxygen vacancy on ferroelectric characteristics and its implication for wake-up and fatigue of HfO2-based thin films. IEEE Trans Electron Dev, 2022, 69: 5297–5301

    Article  Google Scholar 

  60. Chen J, Qian H, Zhang H, et al. Physical origin of recovable ferroelectric fatigue and recovery for doped-HfO2: toward endurance immunity. In: Proceedings of International Electron Devices Meeting (IEDM), 2023

    Google Scholar 

  61. Gong Z, Chen J, Peng Y, et al. Physical origin of the endurance improvement for HfO2-ZrO2 superlattice ferroelectric film. Appl Phys Lett, 2022, 121: 242901

    Article  Google Scholar 

  62. Peng Y, Xiao W, Liu Y, et al. HfO2-ZrO2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability. IEEE Electron Device Lett, 2022, 43: 216–219

    Article  Google Scholar 

  63. Li K, Peng Y, Xiao W, et al. A comparative study on the polarization, reliability, and switching dynamics of HfO2-ZrO2-HfO2 and ZrO2-HfO2-ZrO2 superlattice ferroelectric films. IEEE Trans Electron Dev, 2023, 70: 1802–1807

    Article  Google Scholar 

  64. Kang M, Peng Y, Xiao W, et al. HfO2-ZrO2 ferroelectric capacitors with superlattice structure: improving fatigue stability, fatigue recovery, and switching speed. ACS Appl Mater Interfaces, 2024, 16: 2954–2963

    Article  Google Scholar 

  65. Sang X, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett, 2015, 106: 162905

    Article  Google Scholar 

  66. Luo Q, Cheng Y, Yang J, et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat Commun, 2020, 11: 1391

    Article  Google Scholar 

  67. Zheng Y, Xin T, Yang J, et al. In-situ atomic-level observation ofreversible first-order transition in Hf0.5Zr0.5O2 ferroelectric film. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  68. Hoffmann M, Schroeder U, Schenk T, et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J Appl Phys, 2015, 118: 072006

    Article  Google Scholar 

  69. Chouprik A, Negrov D, Tsymbal E Y, et al. Defects in ferroelectric HfO2. Nanoscale, 2021, 13: 11635–11678

    Article  Google Scholar 

  70. Park M, Kim H, Kim Y, et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl Phys Lett, 2013, 102: 242905

    Article  Google Scholar 

  71. Park M H, Lee Y H, Mikolajick T, et al. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides. Adv Elect Mater, 2019, 5: 1800522

    Article  Google Scholar 

  72. Xin T, Zheng Y, Cheng Y, et al. Atomic visualization of the emergence of orthorhombic phase in Hf0.5Zr0.5O2 ferroelectric film within-situ rapid thermal annealing. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2022

    Google Scholar 

  73. Kim H J, Park M H, Kim Y J, et al. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale, 2016, 8: 1383–1389

    Article  Google Scholar 

  74. Grimley E D, Schenk T, Sang X, et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv Elect Mater, 2016, 2: 1600173

    Article  Google Scholar 

  75. Zheng Y, Zhong C, Zheng Y, et al. In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: from nonpolar tetragonal phase to polar orthorhombic phase. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2021

    Google Scholar 

  76. Gao Z M, Xin T J, Liu C, et al. Reversible and irreversible polarization degradation of Hf0.5Zr0.5O2 capacitors with coherent structural transition at elevated temperatures. In: Proceedings of IEEE International Reliability Physics Symposium (IRPS) 2024

    Google Scholar 

  77. Shimizu T, Mimura T, Kiguchi T, et al. Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Appl Phys Lett, 2018, 113: 212901

    Article  Google Scholar 

  78. Zheng Y, Zhang Y, Xin T, et al. Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films. Mater Today Nano, 2023, 24: 100406

    Article  Google Scholar 

  79. Liao P, Chang Y, Lee Y, et al. Characterization of fatigue and itsrecovery behavior in ferroelectric HfZrO. In: Proceedings of IEEE Symposiumon VLSI Technology and Circuits, 2021

    Google Scholar 

  80. Zheng Y, Zheng Y, Gao Z, et al. Atomic-scale characterization of defects generation during fatigue in ferroelectric Hf0.5Zr0.5O2 films: vacancy generation and lattice dislocation. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  81. Cheng Y, Gao Z, Ye K H, et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat Commun, 2022, 13: 645

    Article  Google Scholar 

  82. Zheng Y Z, Zhao Q W D, Gao Z M, et al. Polarization degradation andrecovery strategies of hafnia-based ferroelectric capacitors after thermal budget in back-end of line process. In: Proceedings of International ElectronDevices Meeting (IEDM), 2024

    Google Scholar 

  83. Kim S J, Mohan J, Summerfelt S R, et al. Ferroelectric Hf0.5Zr0.5O2 thin films: a review of recent advances. JOM, 2019, 71: 246.255

    Article  Google Scholar 

  84. Zhong H, Li M, Zhang Q, et al. Large-scale Hf0.5Zr0.5O2 membranes with robust ferroelectricity. Adv Mater, 2022, 34: 2109889

    Article  Google Scholar 

  85. Wang Y, Zhong Q, Gao Z, et al. Texture in atomic layer deposited Hf0.5Zr0.5O2 ferroelectric thin films. Ceramics Int, 2024, 50: 51770–51774

    Article  Google Scholar 

  86. Lee H, Choe D H, Jo S, et al. Unveiling the origin of robust ferroelectricity in sub-2 nm hafnium zirconium oxide films. ACS Appl Mater Interfaces, 2021, 13: 36499–36506

    Article  Google Scholar 

  87. Gao Z, Zhang W, Zhong Q, et al. Giant electroresistance in hafnia-based ferroelectric tunnel junctions via enhanced polarization. Device, 2023, 1: 100004

    Article  Google Scholar 

  88. Migita S, Morita Y, Mizubayashi W, et al. Preparation of epitaxial HfO2 film (EOT=0.5 nm) on Si substrate using atomiclayer deposition of amorphous film and rapid thermal crystallization (RTC) in an abrupt temperature gradient. In: Proceedings of International Electron Devices Meeting (IEDM), 2010

    Google Scholar 

  89. Gao Z, Xin T, Kai D, et al. Polar axis orientation control of hafnium-based ferroelectric capacitors with in-situ AC electric bias during rapid thermal annealing. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2024

    Google Scholar 

  90. Nie B, Huang Y, Wang Y, et al. Thermal induced Pr degradation under low-voltage operation in HfZrO ferroelectric film: phenomenon and underlying mechanism. IEEE Electron Device Lett, 2023, 44: 1456–1459

    Article  Google Scholar 

  91. Gong T, Xu L, Wei W, et al. First demonstration of a design methodology for highly reliable operation at high temperature on 128 kb 1T1C FeRAM chip. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2023

    Google Scholar 

  92. Wei A, Wallace C, Phillips M, et al. Advanced node DTCO in the EUV era. In: Proceedings of International Electron Devices Meeting (IEDM), 2020

    Google Scholar 

  93. Ali T, Kühnel K, Mertens K, et al. Effect of substrate implant tuning on the performance of MFIS silicon doped hafnium oxide (HSO) FeFET memory. In: Proceedings of IEEE International Memory Workshop (IMW), 2020

    Google Scholar 

  94. Wei W, Zhang W, Tai L, et al. In-depth understanding of polarization switching kinetics in polycrystalline Hf0.5Zr0.5O2 ferroelectric thin film: a transition from NLS to KAI. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  95. Jo J Y, Yang S M, Kim T H, et al. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. Phys Rev Lett, 2009, 102: 045701

    Article  Google Scholar 

  96. Li X, Wu J, Tai L, et al. Temperature-dependent defect behaviors in ferroelectric Hf0.5Zr0.5O2 thin film: re-wakeup phenomenonand underlying mechanisms. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  97. Chen C F, Yu H B, Zheng S Q. First-principles study of hydrogen diffusion mechanism in CrO2O3. Sci China Tech Sci, 2024, 4: 88–94

    Google Scholar 

  98. Shimizu T. Ferroelectricity in HfO2 and related ferroelectrics. J Ceram Soc Jpn, 2018, 126: 667–674

    Article  Google Scholar 

  99. Henry M D, Smith S W, Lewis R M, et al. Stabilization of ferroelectric phase of Hf0.58Zr0.42O2 on NbN at 4 K. Appl Phys Lett, 2019, 114: 092903

    Article  Google Scholar 

  100. Hur J, Luo Y C, Wang Z, et al. Characterizing ferroelectric properties of Hf0.5Zr0.5O2 from deep-cryogenic temperature (4 K) to 400 K. IEEE J Explor Solid-State Comput Devices Circuits, 2021, 7: 168–174

    Article  Google Scholar 

  101. Rowley S E, Spalek L J, Smith R P, et al. Ferroelectric quantum criticality. Nat Phys, 2014, 10: 367–372

    Article  Google Scholar 

  102. Meng X J, Sun J L, Wang X G, et al. Temperature dependence of ferroelectric and dielectric properties of PbZr0.5Ti0.5O3 thin film based capacitors. Appl Phys Lett, 2002, 81: 4035–4037

    Article  Google Scholar 

  103. Eitel R E, Randall C A, Shrout T R, et al. Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1 - x)BiScO3-xPbTiO3. Jpn J Appl Phys, 2002, 41: 2099–2104

    Article  Google Scholar 

  104. Zhou D, Guan Y, Vopson M M, et al. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films. Acta Mater, 2015, 99: 240–246

    Article  Google Scholar 

  105. Mueller S, Muller J, Schroeder U, et al. Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans Device Mater Relib, 2013, 13: 93–97

    Article  Google Scholar 

  106. Park M H, Chung C, Schenk T, et al. Origin of temperature-dependent ferroelectricity in Si-doped HfO2. Adv Elect Mater, 2018, 4: 1700489

    Article  Google Scholar 

  107. Hoffmann M, Schroeder U, Künneth C, et al. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy, 2015, 18: 154–164

    Article  Google Scholar 

  108. Park M H, Chung C, Schenk T, et al. Effect of annealing ferroelectric HfO2 thin films: in situ, high temperature X-ray diffraction. Adv Elect Mater, 2018, 4: 1800091

    Article  Google Scholar 

  109. Zhang M, Qian H, Xu J, et al. Enhanced endurance and stability of FDSOI ferroelectric FETs at cryogenic temperatures for advanced memory applications. IEEE Trans Electron Dev, 2024, 71: 6680–6685

    Article  Google Scholar 

  110. Xu J, Shen R, Qian H, et al. Characterizing polarization switching kinetics of ferroelectric Hf0.5Zr0.5O2 at cryogenic temperature. J Appl Phys, 2024, 136: 104101

    Article  Google Scholar 

  111. Aidam R, Schneider R. Growth and characterization of Pb(Zr,Ti)O3 thin films and ferroelectric polarization charging of YBa2Cu3O7 thin films. Thin Solid Films, 2001, 384: 1–14

    Article  Google Scholar 

  112. Lookman A, Bowman R M, Gregg J M, et al. Thickness independence of true phase transition temperatures in barium strontium titanate films. J Appl Phys, 2004, 96: 555–562

    Article  Google Scholar 

  113. Bohuslavskyi H, Grigoras K, Ribeiro M, et al. Ferroelectric Hf0.5Zr0.5O2 for analog memory and in-memory computing applications down to deep cryogenic temperatures. Adv Elect Mater, 2024, 10: 2300879

    Article  Google Scholar 

  114. Hur J, Park C, Choe G, et al. Characterizing HfO2-based ferroelectric tunnel junction in cryogenic temperature. IEEE Trans Electron Dev, 2022, 69: 5948–5951

    Article  Google Scholar 

  115. Dai Y, Zhang W, Shi L, et al. An area-efficient VLSI architecture for high-throughput computation of the 2-D DWT. IEEE Trans VLSI Syst, 2025, 33: 1292–1303

    Article  Google Scholar 

  116. Yang J, Luo Q, Xue X, et al. A 9 Mb HZO-based embedded FeRAM with 1012-cycle endurance and 5/7 ns read/write using ECC-assisted data refresh and offset-canceled sense amplifier. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2023

    Google Scholar 

  117. Ramaswamy N, Calderoni A, Zahurak J, et al. NVDRAM: a 32 Gb dual layer 3D stacked non-volatile ferroelectric memory with near-DRAM performance for demanding AI workloads. In: Proceedings of International Electron Devices Meeting (IEDM), 2023

    Google Scholar 

  118. Okuno J, Kunihiro T, Yonai T, et al. A highly reliable 1.8 V 1 Mb Hf0.5Zr0.5O2-based 1T1C FeRAM array with 3-D capacitors. In: Proceedings of International Electron Devices Meeting (IEDM), 2023

    Google Scholar 

  119. Francois T, Coignus J, Makosiej A, et al. High-performance operation and solder reflow compatibility in BEOL-integrated 16-kb HfO2:Si-based 1T-1C FeRAM arrays. IEEE Trans Electron Dev, 2022, 69: 2108–2114

    Article  Google Scholar 

  120. Chang S, Neumann C, Alpizar B, et al. Reliable low-voltage FeRAM capacitors for high-speed dense embedded memory in advanced CMOS. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2024

    Google Scholar 

  121. Okuno J, Kunihiro T, Konishi K, et al. High-endurance and low-voltage operation of 1T1C FeRAM arrays for nonvolatile memory application. In: Proceedings of IEEE International Memory Workshop (IMW), 2021

    Google Scholar 

  122. Hur J, Luo Y C, Tasneem N, et al. Ferroelectric hafnium zirconium oxide compatible with back-end-of-line process. IEEE Trans Electron Dev, 2021, 68: 3176–3180

    Article  Google Scholar 

  123. Huang T, Li Y C, Chen C F, et al. Demonstration of robust breakdown reliability and enhanced endurance in gallium doped HfO2 ferroelectric thin films. IEEE Electron Device Lett, 2023, 44: 1476–1479

    Article  Google Scholar 

  124. Gong T, Tao L, Li J, et al. 105× endurance improvement of FE-HZO by an innovative rejuvenation method for 1z node NV-DRA Mapplications. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2021

    Google Scholar 

  125. Tahara K, Toprasertpong K, Hikosaka, et al. Strategy toward HZOBEOL-FeRAM with low-voltage operation (⩽1.2 V), low process temperature, and high endurance by thickness scaling. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2021

    Google Scholar 

  126. Toprasertpong K, Tahara K, Hikosaka Y, et al. Low operating voltage, improved breakdown tolerance, and high endurance in Hf0.5Zr0.5O2 ferroelectric capacitors achieved by thickness scaling down to 4 nm for embedded ferroelectric memory. ACS Appl Mater Interfaces, 2022, 14: 51137–51148

    Article  Google Scholar 

  127. Guido R, Wang X, Xu B, et al. Ferroelectric Al0.85Sc0.15N and Hf0.5Zr0.5O2 domain switching dynamics. ACS Appl Mater Interfaces, 2024, 16: 42415–42425

    Article  Google Scholar 

  128. Fu Z, Wang K, Xu S, et al. Novel asymmetric operation scheme for HfO2-based FeRAM based on reconstruction of ferroelectric dynamics impacts. IEEE Electron Device Lett, 2023, 45: 20–23

    Article  Google Scholar 

  129. Liao A, Jerry K, Hollander M, et al. 4F2 stackable polysilicon channel access device for ultra-dense NVDRAM. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2024

    Google Scholar 

  130. Hwang J, Lim S, Kim G, et al. Non-volatile majority function logic using ferroelectricmemory for logic in memory technology. IEEE Electron Device Lett, 2022, 43: 1049–1052

    Article  Google Scholar 

  131. Hsieh E, Chang J, Tang T, et al. NVDimm-FE: a high-density 3D architecture of 3-bit/c 2TnC FE to break great memory wall with 10 ns of PGM-pulse, 1010 cycles of endurance, and decade lifetime at 103°C. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2022

    Google Scholar 

  132. Chen W. Selector-free cross-point memory architecture based on ferroelectric MFM capacitors. In: Proceedings of IEEE 11th International Memory Workshop (IMW), 2019

    Google Scholar 

  133. Fu Z, Cao S, Zheng H, et al. First demonstration of hafnia-based selector-free FeRAM with high disturb immunity through design technology co-optimization. In: Proceedings of International Electron Devices Meeting (IEDM), 2023

    Google Scholar 

  134. Fu Z, Cao S, Zheng H, et al. Hafnia-based high-disturbance-immune and selector-free cross-point FeRAM. IEEE Trans Electron Dev, 2024, 71: 3358–3364

    Article  Google Scholar 

  135. Xu W, Fu Z, Wang K, et al. A novel small-signal ferroelectric capacitance-based content addressable memory for area- and energy-efficient lifelong learning. IEEE Electron Device Lett, 2023, 45: 24–27

    Article  Google Scholar 

  136. Luo J, Song B, Lin Y, et al. Experimental demonstration of resonant adiabatic writing and computing in ferroelectric capacitive memory array forenergy-efficient edge AI. In: Proceedings of International Electron Devices Meeting (IEDM), 2024

    Google Scholar 

  137. Xu W, Fu Z, Wang K, et al. A novel small-signal ferroelectric memcapacitor based capacitive computing-in-memory for area-and energy-efficient quantized neural networks. In: Proceedings of IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2024

    Google Scholar 

  138. Fu Z, Wang K, Fu B, et al. Novel energy-efficient hafnia-based ferroelectric processing-in-sensor with in-situ motion detection andfour-quarter mutipilcation. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  139. Gong N, Ma T P. A study of endurance issues in HfO2-based ferroelectric field effect transistors: charge trapping and trap generation. IEEE Electron Device Lett, 2017, 39: 15–18

    Article  Google Scholar 

  140. Zhou Y, Liang Z, Luo W. Ferroelectric and interlayer co-optimization with in-depth analysis for high endurance FeFET. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  141. Garg C, Chauhan N, Deng S, et al. Impact of random spatial fluctuation in non-uniform crystalline phases on the device variation of ferroelectric FET. IEEE Electron Device Lett, 2021, 42: 1160–1163

    Article  Google Scholar 

  142. Zhou Y, Huang W, Zhu R et al. A reliable 2 bit MLC FeFET with high uniformity and 109 endurance by gate stack and write pulse co-optimization. In: Proceedings of IEEE European Solid-State Electronics Research Conference (ESSERC), 2024

    Google Scholar 

  143. Mulaosmanovic H, Ocker J, Müller S, et al. Novel ferroelectric FET based synapse for neuromorphic systems. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2017

    Google Scholar 

  144. Zhou Y, Shao H, Zhu R, et al. Hybrid-FE-layer FeFET with high linearity and endurance toward on-chip CIM by array demonstration. IEEE Electron Device Lett, 2023, 45: 276–279

    Article  Google Scholar 

  145. Li Z, Wu J, Mei X, et al. A 3D vertical-channel ferroelectric/anti-ferroelectric FET with indium oxide. IEEE Electron Device Lett, 2022, 43: 1227–1230

    Article  Google Scholar 

  146. Feng Y, Zhang D, Sun C, et al. First demonstration of BEOL-compatible 3D vertical FeNOR. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2024

    Google Scholar 

  147. Sun C, Han K, Samanta S, et al. First demonstration of BEOL-compatible ferroelectric TCAM featuring a-IGZO Fe-TFTs with large memory window of 2.9 V, scaled channel length of 40 nm//and high endurance of 108 cycles. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2021

    Google Scholar 

  148. Dutta S, Ye H, Chakraborty W, et al. Monolithic 3D integration of high endurancemulti-bit ferroelectric FET for accelerating compute-in-memory. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020

    Google Scholar 

  149. Yoo J, Hong J H, Kim H, et al. High-pressure H2O post-annealing for improving reliability of LTPS and a-IGZO thin-film transistors within a coplanar structure. Mater Sci Semiconductor Processing, 2023, 157: 107299

    Article  Google Scholar 

  150. Liang Z, Tang K, Dong J. A novel high-endurance FeFET memory device based on ZrO2 anti-ferroelectric and IGZO channel. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  151. Zhu R, Zhou Y, Sun C. Improved memory density and endurance by a novel 1T3C FeFET for BEOL multi-level cell memory. In: Proceedings of IEEE Electron Devices Technology and Manufacturing Conference (EDTM), 2024

    Google Scholar 

  152. Lu T, Zhao X, Liu H, et al. Optimal weight models for ferroelectric synapses toward neuromorphic computing. IEEE Trans Electron Dev, 2023, 70: 2297–2303

    Article  Google Scholar 

  153. Liu Y, Duan X, Shin H J, et al. Promises and prospects of two-dimensional transistors. Nature, 2021, 591: 43–53

    Article  Google Scholar 

  154. Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5: 5678

    Article  Google Scholar 

  155. Wang X, Zhu C, Deng Y, et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat Commun, 2021, 12: 1109

    Article  Google Scholar 

  156. Luo Z D, Zhang S, Liu Y, et al. Dual-ferroelectric-coupling-engineered two-dimensional transistors for multifunctional inmemory computing. ACS Nano, 2022, 16: 3362–3372

    Article  Google Scholar 

  157. Zhao Z, Rakheja S, Zhu W. Nonvolatile reconfigurable 2D Schottky barrier transistors. Nano Lett, 2021, 21: 9318–9324

    Article  Google Scholar 

  158. Lv L, Zhuge F, Xie F, et al. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat Commun, 2019, 10: 3331

    Article  Google Scholar 

  159. Luo Z D, Xia X, Yang M M, et al. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano, 2020, 14: 746–754

    Article  Google Scholar 

  160. Zha J, Shi S, Chaturvedi A, et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv Mater, 2023, 35: 2211598

    Article  Google Scholar 

  161. Chi M, Zhao Y, Zhang X, et al. A piezotronic and magnetic dual-gated ferroelectric semiconductor transistor. Adv Funct Mater, 2023, 33: 2307901

    Article  Google Scholar 

  162. Han W, Zheng X, Yang K, et al. Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nat Nanotechnol, 2022, 18: 55–63

    Article  Google Scholar 

  163. Kim J, Kim S, Yu H. Enhanced electrical polarization in van der Waals α-In2Se3 ferroelectric semiconductor field-effect transistors by eliminating surface screening charge. Small, 2024, 20: 2405459

    Article  Google Scholar 

  164. Li X, Li S, Tian J, et al. Multi-functional platform for in-memory computing and sensing based on 2D ferroelectric semiconductor α-In2Se3. Adv Funct Mater, 2024, 34: 2306486

    Article  Google Scholar 

  165. Liao J, Wen W, Wu J, et al. Van der Waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano, 2023, 17: 6095–6102

    Article  Google Scholar 

  166. Liu K, Dang B, Zhang T, et al. Multilayer reservoir computing based on ferroelectric α-In2Se3 for hierarchical information processing. Adv Mater, 2022, 34: 2108826

    Article  Google Scholar 

  167. Park S, Lee D, Kang J, et al. Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array. Nat Commun, 2023, 14: 6778

    Article  Google Scholar 

  168. Si M, Saha A K, Gao S, et al. A ferroelectric semiconductor field-effect transistor. Nat Electron, 2019, 2: 580–586

    Article  Google Scholar 

  169. Wang L, Wang X, Zhang Y, et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv Funct Mater, 2020, 30: 2004609

    Article  Google Scholar 

  170. Wang S, Liu L, Gan L, et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat Commun, 2021, 12: 53

    Article  Google Scholar 

  171. Xue F, He X, Retamal J R D, et al. Gate-tunable and multidirection-switchable memristive phenomena in a van Der Waals ferroelectric. Adv Mater, 2019, 31: 1901300

    Article  Google Scholar 

  172. Luo J, Xu W, Du Y, et al. Energy-and area-efficient Fe-FinFET-based time-domain mixed-signal computing in memory for edge machine learning. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  173. Luo J, Fu B, Du Y, et al. Energy-efficient ferroelectric-FET-based agent with memory trace for enhanced reinforcement learning. IEEE Electron Device Lett, 2023, 45: 264–267

    Article  Google Scholar 

  174. Luo J, Shao H, Fu B, et al. Novel ferroelectric tunnel FinFET basedencryption-embedded computing-in-memory for secure AI with high area-andenergy-efficiency. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  175. Luo J, Xu W, Fu B, et al. A novel ambipolar ferroelectric tunnel FinFET based content addressable memory with ultra-low hardware cost andhigh energy efficiency for machine learning. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2022

    Google Scholar 

  176. Chen C, Yang M, Liu S, et al. Bio-inspired neurons based on novel leaky-FeFET with ultra-low hardware cost and advanced functionality forall-ferroelectric neural network. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2019

    Google Scholar 

  177. Luo J, Liu T, Fu Z, et al. Capacitor-less stochastic leaky-FeFET neuron of both excitatory and inhibitory connections for SNN with reduced hardware cost. In: Proceedings of International Electron Devices Meeting (IEDM), 2019

    Google Scholar 

  178. Luo J, Liu T, Fu Z, et al. Ferroelectric FET based signed synapses of excitatory and inhibitory connection for stochastic spiking neural network based optimizer. In: Proceedings of IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2023

    Google Scholar 

  179. Luo J, Liu T, Fu Z, et al. A novel ferroelectric FET-based adaptively-stochastic neuron for stimulated-annealing based optimizer with ultra-low hardware cost. IEEE Electron Device Lett, 2021, 43: 308–311

    Article  Google Scholar 

  180. Ali F, Ali T, Lehninger D, et al. Fluorite-structured ferroelectric and antiferroelectric materials: a gateway of miniaturized electronic devices. Adv Funct Mater, 2022, 32: 2201737

    Article  Google Scholar 

  181. Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys, 2006, 100: 051606

    Article  Google Scholar 

  182. Garcia V, Fusil S, Bouzehouane K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 2009, 460: 81–84

    Article  Google Scholar 

  183. Hu W J, Wang Z, Yu W, et al. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions. Nat Commun, 2016, 7: 10808

    Article  Google Scholar 

  184. Ma C, Luo Z, Huang W, et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat Commun, 2020, 11: 1439

    Article  Google Scholar 

  185. Chanthbouala A, Garcia V, Cherifi R O, et al. A ferroelectric memristor. Nat Mater, 2012, 11: 860–864

    Article  Google Scholar 

  186. Luo Z, Wang Z, Guan Z, et al. High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing. Nat Commun, 2022, 13: 699

    Article  Google Scholar 

  187. Boyn S, Douglas A M, Blouzon C, et al. Tunnel electroresistance in BiFeO3 junctions: size does matter. Appl Phys Lett, 2016, 109: 232902

    Article  Google Scholar 

  188. Lee K, Byun J, Park K, et al. Giant tunneling electroresistance in epitaxial ferroelectric ultrathin films directly integrated on Si. Appl Mater Today, 2022, 26: 101308

    Article  Google Scholar 

  189. Berdan R, Marukame T, Ota K, et al. Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat Electron, 2020, 3: 259–266

    Article  Google Scholar 

  190. Ryu H, Wu H, Rao F, et al. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing. Sci Rep, 2019, 9: 20383

    Article  Google Scholar 

  191. Cheema S S, Shanker N, Hsu C, et al. One nanometer HfO2-based ferroelectric tunnel junctions on silicon. Adv Elect Mater, 2022, 8: 2100499

    Article  Google Scholar 

  192. Gränsmark E. Ru and RuO2 as bottom electrodes for HZO based FTJ’s. Dissertation for Master’s Degree. Lund: Lund niversity, 2023

    Google Scholar 

  193. Liu Y, Cao Y, Zhu H, et al. HfZrOx-based ferroelectric tunnel junction with crested symmetric band structure engineering. IEEE Electron Device Lett, 2021, 42: 1311–1314

    Article  Google Scholar 

  194. Li Z, Tang S, Wang T, et al. Effect of lanthanum-aluminum co-doping on structure of hafnium oxide ferroelectric crystals. Adv Sci, 2025, 12: 2410765

    Article  Google Scholar 

  195. Yuan P, Wang B, Yang Y, et al. Enhanced remnant polarization (30 μC/cm2) and retention of ferroelectric Hf0.5Zr0.5O2 by NH3 plasma treatment. IEEE Electron Device Lett, 2022, 43: 1045–1048

    Article  Google Scholar 

  196. Yin Y, Huang W, Liu Y, et al. Octonary resistance states in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions. Adv Elect Mater, 2015, 1: 1500183

    Article  Google Scholar 

  197. Zhou C, Ma L, Feng Y, et al. Enhanced polarization switching characteristics of HfO2 ultrathin films via acceptor-donor co-doping. Nat Commun, 2024, 15: 2893

    Article  Google Scholar 

  198. Song Y, Yu J, Wang Z, et al. Ultrafast switching of ferroelectric HfO2-ZrO2 under low voltage with layered structure. IEEE Electron Device Lett, 2024, 46: 12–15

    Article  Google Scholar 

  199. Wong H S P, Salahuddin S. Memory leads the way to better computing. Nat Nanotech, 2015, 10: 191–194

    Article  Google Scholar 

  200. Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345: 668–673

    Article  Google Scholar 

  201. Xu K, Wang T, Lu C, et al. Novel Two-terminal synapse/neuron based on an antiferroelectric hafnium zirconium oxide device for neuromorphic computing. Nano Lett, 2024, 24: 11170–11178

    Article  Google Scholar 

  202. George S, Ma K, Aziz A, et al. Nonvolatile memory design based onferroelectric FETs. In: Proceedings of ACM/EDAC/IEEE Design Automation Conference (DAC), 2016

    Google Scholar 

  203. George S, Li X, Liao M J, et al. Symmetric 2-D-memory access to multidimensional data. IEEE Trans VLSI Syst, 2018, 26: 1040–1050

    Article  Google Scholar 

  204. Li X, Wu J, Ni K, et al. Design of 2T/Cell and 3T/Cell nonvolatile memories with emerging ferroelectric FETs. IEEE Des Test, 2019, 36: 39–45

    Article  Google Scholar 

  205. Wu J, Zhong H, Ni K, et al. A 3T/cell practical embedded nonvolatile memory supporting symmetric read and write access based on ferroelectric FETs. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), 2019

    Google Scholar 

  206. George S, Liao M, Jiang H, et al. MDACache: caching for multi-dimensional-accessmemories. In: Proceedings of IEEE/ACM International Symposium on Microarchitecture (MICRO), Fukuoka, 2018

    Google Scholar 

  207. Wang P, Li S, Sun J, et al. RC-NVM: enabling symmetric row and columnmemory accesses for in-memory databases. In: Proceedings of IEEE International Symposium on High Performance Computer Architecture (HPCA), 2018

    Google Scholar 

  208. Ma X, Deng S, Wu J, et al. A 2-transistor-2-capacitor ferroelectric edge compute-in-memory scheme with disturb-free inference and high endurance. IEEE Electron Device Lett, 2023, 44: 1088–1091

    Article  Google Scholar 

  209. Ni K, Li X, Smith J A, et al. Write disturb in ferroelectric FETs and its implication for 1T-FeFET AND memory arrays. IEEE Electron Device Lett, 2018, 39: 1656–1659

    Article  Google Scholar 

  210. Xiao Y, Xu Y, Jiang Z, et al. On the write schemes and efficiency of FeFET 1T NOR array for embedded nonvolatile memory and beyond. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  211. Wu J, Xu Y, Xue B, et al. Adaptive circuit approaches to low-powermulti-level/cell FeFET memory. In: Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC), 2020

    Google Scholar 

  212. Yang J, Luo Q, Xue X, et al. A 9 Mb HZO-based embedded FeRAM with 1012-cycle endurance and 5/7 ns read/write using ECC-assisted data refresh and offset-canceled sense amplifier. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2023

    Google Scholar 

  213. Genssler P R, van Santen V M, Henkel J, et al. On the reliability of FeFET on-chip memory. IEEE Trans Comput, 2022, 71: 947–958

    Article  Google Scholar 

  214. Wu J, Liao T, Li T, et al. Lowering latency of embedded memory by exploiting in-cell victim cache hierarchy based on emerging multi-level memory devices. In: Proceedings of IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2023

    Google Scholar 

  215. Saito D, Kobayashi T, Koga H, et al. Analog in-memory computing in FeFET-based 1T1R array for edge AI applications. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2021

    Google Scholar 

  216. Chen W, Huang F, Qin S, et al. 4 bits/cell hybrid 1F1R for high density embedded non-volatile memory and its application for compute in memory. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2022

    Google Scholar 

  217. Zhong H, Zhu Y, Luo L, et al. Fe-GCN: a 3D FeFET memory based PIM accelerator for graph convolutional networks. In: Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2023

    Google Scholar 

  218. Ni K, Gupta A, Prakash O, et al. Impact of extrinsic variation sourceson the device-to-device variation in ferroelectric FET. In: Proceedings of IEEE International Reliability Physics Symposium (IRPS), 2020

    Google Scholar 

  219. Aabrar K A, Gomez J, Kirtania S, et al. BEOL compatible superlattice ferro FET-based high precision analog weight cell with superior linearity and symmetry. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  220. Soliman T, Müller F, Kirchner T, et al. Ultra-low power flexible precision FeFET based analog in-memory computing. In: Proceedings of International Electron Devices Meeting (IEDM), 2020

    Google Scholar 

  221. Soliman T, Laleni N, Kirchner T, et al. FELIX: a ferroelectric FET based low power mixed-signal in-memory architecture for DNN acceleration. ACM Trans Embed Comput Syst, 2022, 21: 1–25

    Article  Google Scholar 

  222. Soliman T, Chatterjee S, Laleni N, et al. First demonstration of in-memory computing crossbar using multi-level cell FeFET. Nat Commun, 2022, 14: 6348

    Article  Google Scholar 

  223. Yin G, Cai Y, Wu J, et al. Enabling lower-power charge-domain nonvolatile in-memory computing with ferroelectric FETs. IEEE Trans Circuits Syst II, 2021, 68: 2262–2266

    Google Scholar 

  224. Li T, Zhong H, Wu J, et al. CafeHD: a charge-domain FeFET-based compute-in-memory hyperdimensional encoder with hypervector merging. In: Proceedings of Automation & Test in Europe Conference & Exhibition (DATE), 2024

    Google Scholar 

  225. Li T, Guo X, Li T, et al. First demonstration of reconfigurable andlow-power strong physical unclonable function empowered by FeFET cycle-to-cycle variation. PREPRINT (Version 1) available at Research Square, 2024

    Google Scholar 

  226. Li T, Zhong H, Xu Y, et al. REMNA: variation-resilient and energy-efficient MLC FeFET computing-in-memory using NAND flash-like readand adaptive control. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2024

    Google Scholar 

  227. Lee M, Tang W, Chen Y, et al. Victor: a variation-resilient approach using cell-clustered charge-domain computing for high-density high-throughput MLC CiM. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), 2023

    Google Scholar 

  228. Xiao Y, Jia Y, Liu C, et al. Edge computing security: state of the art and challenges. Proc IEEE, 2019, 107: 1608–1631

    Article  Google Scholar 

  229. Yang K. Custom CMOS and post-CMOS crossbar circuits forresource-constrained hardware security primitives. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019

    Google Scholar 

  230. Shao H, Zhou Y, Huang W, et al. A novel FeFET array-based PUF:Co-optimization of entropy source and CRP generation for enhanced robustnessin IoT security. In: Proceedings of International Electron Devices Meeting (IEDM), 2023

    Google Scholar 

  231. Shao H, Fu B, Yang J, et al. IMCE: an in-memory computing and encrypting hardware architecture for robust edge security. In: Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE), 2024

    Google Scholar 

  232. Shao H, Zhou Y, Ning Z, et al. First demonstration of high throughput and reliable homomorphic encryption using FeFET arrays for resource-limited IoT clients. In: Proceedings of International Electron Devices Meeting (IEDM), 2024

    Google Scholar 

  233. Chen J, Xu J, Gu J, et al. Low-power edge detection based on ferroelectric field-effect transistor. Nat Commun, 2025, 16: 565

    Article  Google Scholar 

  234. Chang S C, Haratipour N, Shivaraman S, et al. Anti-ferroelectric HfxZr1-xO2 capacitors for high-density 3-D embedded-DRAM. In: Proceedings of International Electron Devices Meeting (IEDM), 202

  235. Chang S C, Haratipour N, Shivaraman S, et al. FeRAM usinganti-ferroelectric capacitors for high-speed and high-density embeddedmemory. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  236. Spessot A, Oh H. 1T-1C dynamic random access memory status, challenges, and prospects. IEEE Trans Electron Dev, 2020, 67: 1382–1393

    Article  Google Scholar 

  237. Zhou D, Xu J, Li Q, et al. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl Phys Lett, 2013, 103: 192904

    Article  Google Scholar 

  238. Buragohain P, Richter C, Schenk T, et al. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors. Appl Phys Lett, 2018, 112: 222901

    Article  Google Scholar 

  239. Clima S, McMitchell S, Florent K, et al. First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1-xZrxO2 for FEFET applications. In: Proceedings of International Electron Devices Meeting (IEDM), 2018

    Google Scholar 

  240. Maeda T, Magyari-Kope B, Nishi Y, et al. Identifying ferroelectric switching pathways in HfO2: first principles calculations under electric fields. In: Proceedings of IEEE International Memory Workshop (IMW), 2018

    Google Scholar 

  241. Clima S, Sullivan B, Ronchi N, et al. Ferroelectric switching in FEFET: physics of the atomic mechanism and switching dynamics in HfZrOx, HfO2 with oxygen vacancies and Si dopants. In: Proceedings of International Electron Devices Meeting (IEDM), 2020

    Google Scholar 

  242. Chen D, Zhong S, Dong Y, et al. Correlation between crystal phase composition, wake-up effect, and endurance performance in ferroelectric HfxZr1-xO2 thin films. Appl Phys Lett, 2023, 122: 212903

    Article  Google Scholar 

  243. Lederer M, Olivo R, Lehninger D, et al. On the origin of wake-up and antiferroelectric-like behavior in ferroelectric hafnium oxide. Phys Status Solidi-R, 2021, 15: 2100086

    Article  Google Scholar 

  244. Mittmann T, Materano M, Chang S, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance. In: Proceedings of International Electron Devices Meeting (IEDM), 2020

    Google Scholar 

  245. Bulyarskiy S V, L’vov P E, Litvinova K I, et al. Water dose influence to the ALD hafnium oxide process: simulation and experiment. Mater Today Commun, 2024, 39: 108622

    Article  Google Scholar 

  246. Chen D, Gao Q, Fan Y, et al. Short-term and long-term T-O phase transition responsible for two stages of wake-up process in ferroelectric Hf0.5Zr0.5O2 film. In: Proceedings of Silicon Nanoelectronics Workshop (SNW), 2024

    Google Scholar 

  247. Hsiang K Y, Chen Y, Chang F, et al. Novel opposite polarity cycling recovery (OPCR) of HfZrO2 antiferroelectric-RAM with an access scheme toward unlimited endurance. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  248. Pešiç M, Hoffmann M, Richter C, et al. Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv Funct Mater, 2016, 26: 7486–7494

    Article  Google Scholar 

  249. Pesic M, Knebel S, Hoffmann M, et al. How to make DRAM non-volatile? Anti-ferroelectrics: a new paradigm for universal memories. In: Proceedings of International Electron Devices Meeting (IEDM), 2016

    Google Scholar 

  250. Chen D, Zhong S, Dong Y, et al. Antiferroelectric phase evolution in HfxZr1-xO2 thin film toward high endurance of non-volatile memory devices. IEEE Electron Device Lett, 2022, 43: 2065–2068

    Article  Google Scholar 

  251. Qian H, Shen R, Zhang H, et al. Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1-xO2. Appl Phys Lett, 2024, 124: 243508

    Article  Google Scholar 

  252. Lomenzo P D, Li S, Pintilie L, et al. Memory window enhancement in antiferroelectric RAM by Hf doping in ZrO2. IEEE Electron Device Lett, 2022, 43: 1447–1450

    Article  Google Scholar 

  253. Chang S C, Haratipour N, Shivaraman S, et al. FeRAM using anti-ferroelectric capacitors for high-speed and high-density embedded memory. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  254. Liang Z, Tang K, Dong J, et al. A novel high-endurance FeFET memory device based on ZrO2 anti-ferroelectric and IGZO channel. In: Proceedings of International Electron Devices Meeting (IEDM). 2021

    Google Scholar 

  255. Zheng Z, Sun C, Jiao L, et al. Boosting the memory window of the BEOL-compatible MFMIS ferroelectric/anti-ferroelectric FETs by charge injection. In: Proceedings of IEEE Symposium on VLSI Technology and Circuits, 2022

    Google Scholar 

  256. Cao R, Zhang X, Liu S, et al. Compact artificial neuron based on anti-ferroelectric transistor. Nat Commun, 2022, 13: 7018

    Article  Google Scholar 

  257. Sun C, Wang X, Xu H, et al. Novel a-IGZO anti-ferroelectric FET LIF neuron with co-integrated ferroelectric FET synapse for spiking neural networks. In: Proceedings of International Electron Devices Meeting (IEDM), 2022

    Google Scholar 

  258. Zheng Z, Xie J, Sun Y, et al. First demonstration of BEOL-compatible amorphous InGaZnOX channel antiferroelectric (Hf0.2Zr0.8O2)-enhanced floating gate memory. In: Proceedings of International Conference on IC Design and Technology (ICICDT), 2023

    Google Scholar 

  259. Zheng Z, Jiao L, Zhou Z, et al. First demonstration of work function-engineered BEOL-compatible IGZO non-volatile MFMIS AFeFETs and their co-integration with volatile-AFeFETs. In: Proceedings of IEEE Symposiumon VLSI Technology and Circuits, 2023

    Google Scholar 

  260. Zhong H, Zheng Z, Jiao L, et al. Eliminating leakage in volatile memory with anti-ferroelectric transistors. 2022. ArXiv:2212.04973

    Google Scholar 

  261. Zhong H, Zheng Z, Liao L, et al. First demonstration of AFeFET-based capacitor-less eDRAM computing-in-memory featuring 4.84 Mb/mm2 high memory density, 105 s long retention time, and >1010 high endurance. In: Proceedings of International Electron Devices Meeting (IEDM), 2024

    Google Scholar 

  262. Hsiang K Y, Liao C Y, Liu J H, et al. Bilayer-based antiferroelectric HfZrO2 tunneling junction with high tunneling electroresistance and multilevel nonvolatile memory. IEEE Electron Device Lett, 2021, 42: 1464–1467

    Article  Google Scholar 

  263. Hsiang K Y, Liao C Y, Liu J H, et al. Dielectric layer design of bilayer ferroelectric and antiferroelectric tunneling junctions toward 3D NAND-compatible architecture. IEEE Electron Device Lett, 2022, 43: 1850–1853

    Article  Google Scholar 

  264. Goh Y, Hwang J, Jeon S. Excellent reliability and high-speed antiferroelectric HfZrO2 tunnel junction by a high-pressure annealing process and built-in bias engineering. ACS Appl Mater Interfaces, 2020, 12: 57539–57546

    Article  Google Scholar 

  265. Fields S S, Jaszewski S T, Lenox M K, et al. Asymmetric electrode work function customization via top electrode replacement in ferroelectric and field-induced ferroelectric hafnium zirconium oxide thin films. Adv Mater Inter, 2023, 10: 2202232

    Article  Google Scholar 

  266. Simon D K, Jordan P M, Mikolajick T, et al. On the control of the fixed charge densities in Al2O3-based silicon surface passivation schemes. ACS Appl Mater Interfaces, 2015, 7: 28215–28222

    Article  Google Scholar 

  267. Xu Y, Yang Y, Zhao S, et al. Improved multi-bit storage reliablity by design of ferroelectric modulated anti-ferroelectric memory. In: Proceedings of International Electron Devices Meeting (IEDM), 2021

    Google Scholar 

  268. Zhong W M, Luo C L, Tang X G, et al. Dynamic FET-based memristor with relaxor antiferroelectric HfO2 gate dielectric for fast reservoir computing. Mater Today Nano, 2023, 23: 100357

    Article  Google Scholar 

  269. Zhang S, Holec D, Fu W Y, et al. Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J Appl Phys, 2013, 114: 133510

    Article  Google Scholar 

  270. Akiyama M, Kamohara T, Kano K, et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mater, 2009, 21: 593–596

    Article  Google Scholar 

  271. Höglund C, Birch J, Alling B, et al. Wurtzite structure Sc1-xAlxN solid solution films grown by reactive magnetron sputter epitaxy: structural characterization and first-principles calculations. J Appl Phys, 2010, 107: 123515

    Article  Google Scholar 

  272. Fichtner S, Wolff N, Krishnamurthy G, et al. Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems. J Appl Phys, 2017, 122: 035301

    Article  Google Scholar 

  273. Hardy M T, Downey B P, Nepal N, et al. Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates. Appl Phys Lett, 2017, 110: 162104

    Article  Google Scholar 

  274. Frei K, Trejo-Hernández R, Schütt S, et al. Investigation of growth parameters for ScAlN-barrier HEMT structures by plasma-assisted MBE. Jpn J Appl Phys, 2019, 58: SC1045

    Article  Google Scholar 

  275. Wang P, Laleyan D A, Pandey A, et al. Molecular beam epitaxy and characterization of wurtzite ScxAl1-xN. Appl Phys Lett, 2020, 116: 151903

    Article  Google Scholar 

  276. Casamento J, Chang C S, Shao Y T, et al. Structural and piezoelectric properties of ultra-thin ScxAl1-xN films grown on GaN by molecular beam epitaxy. Appl Phys Lett, 2020, 117: 112101

    Article  Google Scholar 

  277. Saidi C, Chaaben N, Bchetnia A, et al. Growth of scandium doped GaN by MOVPE. Superlattices Microstruct, 2013, 60: 120–128

    Article  Google Scholar 

  278. Leone S, Ligl J, Manz C, et al. Metal-organic chemical vapor deposition of aluminum scandium nitride. Phys Status Solidi-R, 2020, 14: 1900535

    Article  Google Scholar 

  279. Ligl J, Leone S, Manz C, et al. Metalorganic chemical vapor phase deposition of AlScN/GaN heterostructures. J Appl Phys, 2020, 127: 195704

    Article  Google Scholar 

  280. Manz C, Leone S, Kirste L, et al. Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition. Semicond Sci Technol, 2021, 36: 034003

    Article  Google Scholar 

  281. Bohnen T, van Dreumel G W G, Hageman P R, et al. Growth of scandium aluminum nitride nanowires on ScN(111) films on 6H-SiC substrates by HVPE. Phys Status Solidi (a), 2009, 206: 2809–2815

    Article  Google Scholar 

  282. Edgar J H, Bohnen T, Hageman P R. HVPE of scandium nitride on 6H-SiC(0001). J Cryst Growth, 2008, 310: 1075–1080

    Article  Google Scholar 

  283. Oshima Y, Víllora E G, Shimamura K. Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers. J Appl Phys, 2014, 115: 153508

    Article  Google Scholar 

  284. Wolff N, Fichtner S, Haas B, et al. Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN. J Appl Phys, 2021, 129: 034103

    Article  Google Scholar 

  285. Yasuoka S, Shimizu T, Tateyama A, et al. Effects of deposition conditions on the ferroelectric properties of (Al1-xScx)N thin films. J Appl Phys, 2020, 128: 114103

    Article  Google Scholar 

  286. Tsai S L, Hoshii T, Wakabayashi H, et al. Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering. Appl Phys Lett, 2021, 118: 082902

    Article  Google Scholar 

  287. Shibukawa R, Tsai S, Hoshii T, et al. Influence of sputtering power onthe switching and reliability of ferroelectric Al0.7ScpN films. Jpn J Appl Phys, 2022, 61: 1003

    Article  Google Scholar 

  288. Yasuoka S, Shimizu T, Tateyama A, et al. Impact of deposition temperature on crystal structure and ferroelectric properties of (Al1-xScx)N films prepared by sputtering method. Physica Status Solidi (a), 2021, 218: 2100302

    Article  Google Scholar 

  289. Tominaga T, Takayanagi S, Yanagitani T. Negative-ion bombardment increases during low-pressure sputtering deposition and their effects on the crystallinities and piezoelectric properties of scandium aluminum nitride films. J Phys D-Appl Phys, 2021, 55: 105306

    Article  Google Scholar 

  290. Pirro M, Zhao X, Herrera B, et al. Effect of substrate-RF on sub-200 nm Al0.7Sc0.3N thin films. Micromachines, 2022, 13: 877

    Article  Google Scholar 

  291. Rassay S, Hakim F, Li C, et al. A segmented-target sputtering process for growth of sub-50 nm ferroelectric scandiumaluminum-nitride films with composition and stress tuning. Phys Status Solidi-R, 2021, 15: 2100087

    Article  Google Scholar 

  292. Zhang Q, Chen M, Liu H, et al. Deposition, characterization, and modeling of scandium-doped aluminum nitride thin film for piezoelectric devices. Materials, 2021, 14: 6437

    Article  Google Scholar 

  293. Schönweger G, Petraru A, Islam M R, et al. From fully strained to relaxed: epitaxial ferroelectric Al1-xScxN for III-N Technology. Adv Funct Mater, 2022, 32: 2109632

    Article  Google Scholar 

  294. Wang P, Wang D, Mondal S, et al. Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy. Appl Phys Lett, 2022, 121: 023501

    Article  Google Scholar 

  295. Wang P, Wang D, Vu N M, et al. Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl Phys Lett, 2021, 118: 223504

    Article  Google Scholar 

  296. Wang D, Wang P, Mondal S, et al. An epitaxial ferroelectric ScAlN/GaN heterostructure memory. Adv Elect Mater, 2022, 8: 2200005

    Article  Google Scholar 

  297. Wolff N, Schönweger G, Streicher I, et al. Demonstration and STEM analysis of ferroelectric switching in MOCVD-grown single crystalline Al0.85Sc0.15N. Adv Phys Res, 2024, 3: 2300113

    Article  Google Scholar 

  298. Wang D, Wang P, Wang B, et al. Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl Phys Lett, 2021, 119: 111902

    Article  Google Scholar 

  299. Uehara M, Mizutani R, Yasuoka S, et al. Demonstration of ferroelectricity in ScGaN thin film using sputtering method. Appl Phys Lett, 2021, 119: 172901

    Article  Google Scholar 

  300. Uehara M, Mizutani R, Yasuoka S, et al. Lower ferroelectric coercive field of ScGaN with equivalent remanent polarization as ScAlN. Appl Phys Express, 2022, 15: 081003

    Article  Google Scholar 

  301. Wang D, Mondal S, Liu J, et al. Ferroelectric YAlN grown by molecular beam epitaxy. Appl Phys Lett, 2023, 123: 033504

    Article  Google Scholar 

  302. Hayden J, Hossain M D, Xiong Y, et al. Ferroelectricity in boron-substituted aluminum nitride thin films. Phys Rev Mater, 2021, 5: 044412

    Article  Google Scholar 

  303. Zhu W, He F, Hayden J, et al. Wake-up in Al1-xBxN ferroelectric films. Adv Elect Mater, 2022, 8: 2100931

    Article  Google Scholar 

  304. Li X, Fang Y, Li B, et al. Effects of residual stress on the ferroelectric properties of Al0.8Sc0.2N films sandwiched between Pt or W electrodes. IEEE Trans Electron Dev, 2025, 72: 1774–1779

    Article  Google Scholar 

  305. Schönweger G, Islam M R, Wolff N, et al. Ultrathin Al1-xScx N for low-voltage-driven ferroelectric-based devices. Phys Status Solidi-R, 2023, 17: 2200312

    Article  Google Scholar 

  306. Wang D, Zheng J, Musavigharavi P, et al. Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films. IEEE Electron Device Lett, 2020, 41: 1774–1777

    Article  Google Scholar 

  307. Wang P, Wang D, Yang S, et al. Chapter two-ferroelectric nitride semiconductors: molecular beam epitaxy, properties, and emerging device applications. Semiconduct Semimet, 2023, 114: 21–69

    Article  Google Scholar 

  308. Mizutani R, Yasuoka S, Shiraishi T, et al. Thickness scaling of (Al0.8Sc0.2)N films with remanent polarization beyond 100 μC cm2 around 10 nm in thickness. Appl Phys Express, 2021, 14: 105501

    Article  Google Scholar 

  309. Tsai S L, Hoshii T, Wakabayashi H, et al. On the thickness scaling of ferroelectricity in Al0.78Sc0.22N films. Jpn J Appl Phys, 2021, 60: SBBA05

    Article  Google Scholar 

  310. Ryoo S K, Kim K D, Park H W, et al. Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm. Adv Elect Mater, 2022, 8: 2200726

    Article  Google Scholar 

  311. Schönweger G, Wolff N, Islam M R, et al. In-grain ferroelectric switching in sub-5 nm thin Al0.74Sc0.26N films at 1 V. Adv Sci, 2023, 10: 2302296

    Article  Google Scholar 

  312. Wang D, Wang P, Mondal S, et al. Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing. Adv Mater, 2023, 35: 2210628

    Article  Google Scholar 

  313. Wang D, Wang P, Mondal S, et al. Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy. Appl Phys Lett, 2023, 122: 052101

    Article  Google Scholar 

  314. Kataoka J, Tsai S L, Hoshii T, et al. A possible origin of the large leakage current in ferroelectric Al1-xScxN films. Jpn J Appl Phys, 2021, 60: 030907

    Article  Google Scholar 

  315. Zheng J X, Wang D, Musavigharavi P, et al. Electrical breakdown strength enhancement in aluminum scandium nitride through a compositionally modulated periodic multilayer structure. J Appl Phys, 2021, 130: 144101

    Article  Google Scholar 

  316. Sun W, Zhou J, Liu N, et al. Integration of ferroelectric Al0.8Sc0.2N on Si (001) substrate. IEEE Electron Device Lett, 2024, 45: 574–577

    Article  Google Scholar 

  317. Kim K H, Karpov I, Olsson R H, et al. Wurtzite and fluorite ferroelectric materials for electronic memory. Nat Nanotechnol, 2023, 18: 422–441

    Article  Google Scholar 

  318. Islam M R, Wolff N, Yassine M, et al. On the exceptional temperature stability of ferroelectric Al1-xScxN thin films. Appl Phys Lett, 2021, 118: 232905

    Article  Google Scholar 

  319. Wolff N, Islam M R, Kirste L, et al. Al1-xScxN thin films at high temperatures: Sc-dependent instability and anomalous thermal expansion. Micromachines, 2022, 13: 1282

    Article  Google Scholar 

  320. Sun W, Zhou J, Jin F, et al. Temperature dependence in coercive fieldof ferroelectric AlScN integrated on Si substrate. In: Proceedings of International Conference on IC Design and Technology, 2024

    Google Scholar 

  321. Wang R, Zhou J, Yao D, et al. Unraveling fatigue mechanisms in ferroelectric AlScN films: the role of oxygen infiltration. IEEE Electron Device Lett, 2025, 46: 381–384

    Article  Google Scholar 

  322. Liu X, Zheng J, Wang D, et al. Aluminum scandium nitride-based metal-ferroelectric-metal diode memory devices with high on/off ratios. Appl Phys Lett, 2021, 118: 202901

    Article  Google Scholar 

  323. Liu X, Wang D, Kim K H, et al. Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett, 2021, 21: 3753–3761

    Article  Google Scholar 

  324. Liu X, Ting J, He Y, et al. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Lett, 2022, 22: 7690–7698

    Article  Google Scholar 

  325. Qian M, Fina I, Sulzbach M C, et al. Synergetic electronic and ionic contributions to electroresistance in ferroelectric capacitors. Adv Elect Mater, 2019, 5: 1800646

    Article  Google Scholar 

  326. Wang P, Wang D, Mondal S, et al. Ferroelectric nitride heterostructures on CMOS compatible molybdenum for synaptic memristors. ACS Appl Mater Interfaces, 2023, 15: 18022–18031

    Article  Google Scholar 

  327. Wang R, Ye H, Xu X, et al. Composition-graded nitride ferroelectrics based multi-level non-volatile memory for neuromorphic computing. Adv Mater, 2025, 37: 2414805

    Article  Google Scholar 

  328. Ambacher O, Christian B, Feil N, et al. Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties. J Appl Phys, 2021, 130: 045102

    Article  Google Scholar 

  329. Wang P, Wang D, Wang B, et al. N-polar ScAlN and HEMTs grown by molecular beam epitaxy. Appl Phys Lett, 2021, 119: 082101

    Article  Google Scholar 

  330. Wang D, Wang D, Zhou P, et al. On the surface oxidation and band alignment of ferroelectric Sc0.18Al0.82N/GaN heterostructures. Appl Surf Sci, 2023, 628: 157337

    Article  Google Scholar 

  331. Wang P, Wang D, Bi Y, et al. Quaternary alloy ScAlGaN: a promising strategy to improve the quality of ScAlN. Appl Phys Lett, 2022, 120: 012104

    Article  Google Scholar 

  332. Wang D, Wang P, He M, et al. Fully epitaxial, monolithic ScAlN/AlGaN/GaN ferroelectric HEMT. Appl Phys Lett, 2023, 122: 090601

    Article  Google Scholar 

  333. Casamento J, Nguyen T S, Cho Y, et al. Transport properties of polarization-induced 2D electron gases in epitaxial AlScN/GaN heterojunctions. Appl Phys Lett, 2022, 121: 192101

    Article  Google Scholar 

  334. Ye H, Wang P, Wang R, et al. Experimental determination of giant polarization in wurtzite III-nitride semiconductors. Nat Commun, 2025, 16: 3863

    Article  Google Scholar 

  335. Zhao Z, Dai Y, Meng F, et al. The incorporation of AlScN ferroelectric gate dielectric in AlGaN/GaN-HEMT with polarization-modulated threshold voltage. Appl Phys Express, 2023, 16: 031002

    Article  Google Scholar 

  336. Yang J Y, Oh S Y, Yeom M J, et al. Pulsed E-/D-mode switchable GaN HEMTs with a ferroelectric AlScN gate dielectric. IEEE Electron Device Lett, 2023, 44: 1260–1263

    Article  Google Scholar 

  337. Mondal S, Wang D, Hu M, et al. ScAlN-based ITO channel ferroelectric field-effect transistors with large memory window. IEEE Trans Electron Dev, 2023, 70: 4618–4621

    Article  Google Scholar 

  338. Kim K H, Han Z, Zhang Y, et al. Multistate, ultrathin, back-end-of-line-compatible AlScN ferroelectric diodes. ACS Nano, 2024, 18: 15925–15934

    Article  Google Scholar 

  339. Sun W, Kou X, Zhou J, et al. AlScN ferroelectric diode enabled CAM with 4F2 cell size and low thermal budget (330.C). IEEE Electron Device Lett, 2025, 46: 568–571

    Article  Google Scholar 

  340. Tagantsev A, Cross L, Fousek J. Domains in Ferroic Crystals and Thin Films. Berlin: Springer, 2010

    Book  Google Scholar 

  341. Sun J, Li Y, Hu D. Roadmap for ferroelectric domain wall memory. Microstructures, 2024, 4: 2024007

    Article  Google Scholar 

  342. Nataf G F, Guennou M, Gregg J M, et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat Rev Phys, 2020, 2: 634.648

    Google Scholar 

  343. Catalan G, Seidel J, Ramesh R, et al. Domain wall nanoelectronics. Rev Mod Phys, 2012, 84: 119.156

    Article  Google Scholar 

  344. Meier D. Functional domain walls in multiferroics. J Phys-Condens Matter, 2015, 27: 463003

    Article  Google Scholar 

  345. Sharma P, Schoenherr P, Seidel J. Functional ferroic domain walls for nanoelectronics. Materials, 2019, 12: 2927

    Article  Google Scholar 

  346. Jiang A Q, Zhang Y. Next-generation ferroelectric domain-wall memories: principle and architecture. NPG Asia Mater, 2019, 11: 2

    Article  Google Scholar 

  347. Meier D, Selbach S M. Ferroelectric domain walls for nanotechnology. Nat Rev Mater, 2022, 7: 157–173

    Article  Google Scholar 

  348. Jiang A, Jiang J, Bai Z. No destructive readout ferroelectric memoryand its preparation method and read/write operation method. CN Patent, 2015(CN201510036526.X)

  349. Jiang J, Bai Z L, Chen Z H, et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat Mater, 2018, 17: 49.56

    Article  Google Scholar 

  350. Sharma P, Zhang Q, Sando D, et al. Nonvolatile ferroelectric domain wall memory. Sci Adv, 2017, 3: 1700512

    Article  Google Scholar 

  351. Jiang A Q, Geng W P, Lv P, et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat Mater, 2020, 19: 1188–1194

    Article  Google Scholar 

  352. Lian J, Chai X, Wang C, et al. Sub 20 nm-node LiNbO3 domain-wall memory. Adv Mater Technol, 2021, 6: 2001219

    Article  Google Scholar 

  353. Hu D, Wang X L, Hu X Y, et al. Ultralow electric-field poling of LiNbO3 single-crystal devices. Appl Phys Lett, 2024, 125: 032902

    Article  Google Scholar 

  354. Zhang W J, Shen B W, Fan H C, et al. Nonvolatile ferroelectric LiNbO3 domain wall crossbar memory. IEEE Electron Device Lett, 2023, 44: 420–423

    Article  Google Scholar 

  355. Zhang W D, Zhuang X, Jiang J, et al. Polarization retention dependence of imprint time within LiNbO3 single-crystal domain wall devices. J Appl Phys, 2022, 132: 224103

    Article  Google Scholar 

  356. Sun J, Li Y, Zhang B, et al. High-power LiNbO3 domain-wall nanodevices. ACS Appl Mater Interfaces, 2023, 15: 8691.8698

    Google Scholar 

  357. Hu D, Shen B W, Sun J, et al. Cryogenic ferroelectric LiNbO3 domain wall memory. IEEE Electron Device Lett, 2024, 45: 380.383

    Article  Google Scholar 

  358. Fan H, Shen B, Jiang A. The operation of lithium niobate ferroelectric domain wall memory at 673 K. IEEE Electron Device Lett, 2024, 45: 1012–1015

    Article  Google Scholar 

  359. Hu X, Hou X, Zhang Y, et al. Size-controlled polarization retention and wall current in lithium niobate single-crystal memories. ACS Appl Mater Interfaces, 2021, 13: 16641–16649

    Article  Google Scholar 

  360. Chen Y, Zhuang X, Chai X, et al. Improved polarization retention in LiNbO3 single-crystal memory cells with enhanced etching angles. J Mater Sci, 2021, 56: 11209–11218

    Article  Google Scholar 

  361. Ao M H, Zheng S Z, Zhong Q L, et al. In-plane ferroelectric domain wall memory with embedded electrodes on LiNbO3 thin films. ACS Appl Mater Interfaces, 2021, 13: 33291–33299

    Article  Google Scholar 

  362. Sharma P, Seidel J. Neuromorphic functionality of ferroelectric domain walls. Neuromorph Comput Eng, 2023, 3: 022001

    Article  Google Scholar 

  363. Sluka T, Tagantsev A K, Bednyakov P, et al. Free-electron gas at charged domain walls in insulating BaTiO3. Nat Commun, 2013, 4: 1808

    Article  Google Scholar 

  364. Sanchez-Santolino G, Tornos J, Hernandez-Martin D, et al. Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions. Nat Nanotech, 2017, 12: 655–662

    Article  Google Scholar 

  365. Li M, Tao L L, Velev J P, et al. Resonant tunneling across a ferroelectric domain wall. Phys Rev B, 2018, 97: 155121

    Article  Google Scholar 

  366. Sharma P, Sando D, Zhang Q, et al. Conformational domain wall switch. Adv Funct Mater, 2019, 29: 1807523

    Article  Google Scholar 

  367. Sun J, Jiang A Q, Sharma P. Ferroelectric domain wall memory and logic. ACS Appl Electron Mater, 2023, 5: 4692.4703

    Article  Google Scholar 

  368. Lu H, Tan Y, McConville J P V, et al. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Adv Mater, 2019, 31: 1902890

    Article  Google Scholar 

  369. Chaudhary P, Lu H, Lipatov A, et al. Low-voltage domain-wall LiNbO3 memristors. Nano Lett, 2020, 20: 5873.5878

    Article  Google Scholar 

  370. Shen B, Sun H, Hu X, et al. Multilevel ferroelectric domain wall memory for neuromorphic computing. Adv Funct Mater, 2024, 34: 2315954

    Article  Google Scholar 

  371. Wang C, Wang T, Zhang W, et al. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Res, 2022, 15: 3606–3613

    Article  Google Scholar 

  372. Chai X, Jiang J, Zhang Q, et al. Nonvolatile ferroelectric field-effect transistors. Nat Commun, 2020, 11: 2811

    Article  Google Scholar 

  373. Sun J, Li Y, Ou Y, et al. In-memory computing of multilevel ferroelectric domain wall diodes at LiNbO3 interfaces. Adv Funct Mater, 2022, 32: 2207418

    Article  Google Scholar 

  374. Suna A, McCluskey C J, Maguire J R, et al. Tuning local conductance to enable demonstrator ferroelectric domain wall diodes and logic gates. Adv Phys Res, 2023, 2: 2200095

    Article  Google Scholar 

  375. Wang J, Ma J, Huang H, et al. Ferroelectric domain-wall logic units. Nat Commun, 2022, 13: 3255

    Article  Google Scholar 

  376. Schaab J, Skjarvo S H, Krohns S, et al. Electrical half-wave rectification at ferroelectric domain walls. Nat Nanotech, 2018, 13: 1028–1034

    Article  Google Scholar 

  377. Wu X, Du K, Zheng L, et al. Microwave conductivity of ferroelectric domains and domain walls in a hexagonal rare-earth ferrite. Phys Rev B, 2018, 98: 081409

    Article  Google Scholar 

  378. Schultheis J, Lysne E, Puntigam L, et al. Charged ferroelectric domain walls for deterministic ac signal control at the nanoscale. Nano Lett, 2021, 21: 9560–9566

    Article  Google Scholar 

  379. Zhang W, Wang C, Lian J W, et al. Erasable ferroelectric domain wall diodes. Chin Phys Lett, 2021, 38: 017701

    Article  Google Scholar 

  380. Wu W, Guest J R, Horibe Y, et al. Polarization-modulated rectification at ferroelectric surfaces. Phys Rev Lett, 2010, 104: 217601

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Project (Grant No. 2023YFB4402303), Fundamental Research Funds for the Central Universities (Grant Nos. YJSJ25013, ZYTS25038), National Natural Science Foundation of China (Grant Nos. 62025402, 62374151, 62204226, 62090033, 62174146, 92064003, 62374002, 62274003, 61927901, 92164203, 62034006, 92264201, 92464205, 62474164, 92477135, 62174054, U21B2030, U24B6015), Major Program of Zhejiang Natural Science Foundation (Grant Nos. DT23F0402, LDQ24F040001, LTGC24F040001), Shanghai Science and Technology Plan Project (Grant Nos. 23ZR1418000, 24CL2900900), Natural Science Foundation of Beijing Municipality (Grant No. Z230024), and the 111 Project (Grant No. B18001).

Author information

Authors and Affiliations

  1. Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, China

    Xiao Yu, Peiyuan Du, Bing Chen, Chengji Jin, Jiajia Chen, Haoji Qian, Wei Mao, Siying Zheng, Huan Liu, Haiwen Xu, Can Liu, Zhihao Shen, Xiaoxi Li, Bochang Li, Zheng-Dong Luo, Jiuren Zhou, Yan Liu, Yue Hao & Genquan Han

  2. Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China

    Ni Zhong, Yan Cheng & Tianjiao Xin

  3. State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, China

    Qing Luo & Tiancheng Gong

  4. School of Information Science and Engineering, Shandong University, Qingdao, 266237, China

    Jiezhi Chen & Jixuan Wu

  5. College of Integrated Circuit, Zhejiang University, Hangzhou, 311231, China

    Ran Cheng

  6. School of Integrated Circuits, Southeast University, Nanjing, 214026, China

    Zhiyuan Fu

  7. School of Integrated Circuits, Peking University, Beijing, 100091, China

    Zhiyuan Fu, Kechao Tang & Jin Luo

  8. School of Integrated Circuits, Tsinghua University, Beijing, 100084, China

    Tianling Ren

  9. Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou, 310027, China

    Fei Xue

  10. School of Microelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China

    Lin Chen, Tianyu Wang, Jie Sun & Anquan Jiang

  11. Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China

    Xueqing Li

  12. National Key Laboratory of Micro and Nano Fabrication Technology and the Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China

    Xiuyan Li

  13. State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China

    Ping Wang & Xinqiang Wang

  14. Faculty of Integrated Circuits, Xidian University, Xi’an, 710071, China

    Xiao Yu, Peiyuan Du, Bing Chen, Chengji Jin, Jiajia Chen, Haoji Qian, Wei Mao, Siying Zheng, Huan Liu, Haiwen Xu, Can Liu, Zhihao Shen, Xiaoxi Li, Bochang Li, Zheng-Dong Luo, Jiuren Zhou, Yan Liu, Yue Hao & Genquan Han

  15. Hangzhou Huarui Chip Innovation Technology Co., Ltd., Hangzhou, 311200, China

    Genquan Han

Authors
  1. Xiao Yu
    View author publications

    Search author on:PubMed Google Scholar

  2. Ni Zhong
    View author publications

    Search author on:PubMed Google Scholar

  3. Yan Cheng
    View author publications

    Search author on:PubMed Google Scholar

  4. Tianjiao Xin
    View author publications

    Search author on:PubMed Google Scholar

  5. Qing Luo
    View author publications

    Search author on:PubMed Google Scholar

  6. Tiancheng Gong
    View author publications

    Search author on:PubMed Google Scholar

  7. Jiezhi Chen
    View author publications

    Search author on:PubMed Google Scholar

  8. Jixuan Wu
    View author publications

    Search author on:PubMed Google Scholar

  9. Ran Cheng
    View author publications

    Search author on:PubMed Google Scholar

  10. Zhiyuan Fu
    View author publications

    Search author on:PubMed Google Scholar

  11. Kechao Tang
    View author publications

    Search author on:PubMed Google Scholar

  12. Jin Luo
    View author publications

    Search author on:PubMed Google Scholar

  13. Tianling Ren
    View author publications

    Search author on:PubMed Google Scholar

  14. Fei Xue
    View author publications

    Search author on:PubMed Google Scholar

  15. Lin Chen
    View author publications

    Search author on:PubMed Google Scholar

  16. Tianyu Wang
    View author publications

    Search author on:PubMed Google Scholar

  17. Xueqing Li
    View author publications

    Search author on:PubMed Google Scholar

  18. Xiuyan Li
    View author publications

    Search author on:PubMed Google Scholar

  19. Ping Wang
    View author publications

    Search author on:PubMed Google Scholar

  20. Xinqiang Wang
    View author publications

    Search author on:PubMed Google Scholar

  21. Jie Sun
    View author publications

    Search author on:PubMed Google Scholar

  22. Anquan Jiang
    View author publications

    Search author on:PubMed Google Scholar

  23. Peiyuan Du
    View author publications

    Search author on:PubMed Google Scholar

  24. Bing Chen
    View author publications

    Search author on:PubMed Google Scholar

  25. Chengji Jin
    View author publications

    Search author on:PubMed Google Scholar

  26. Jiajia Chen
    View author publications

    Search author on:PubMed Google Scholar

  27. Haoji Qian
    View author publications

    Search author on:PubMed Google Scholar

  28. Wei Mao
    View author publications

    Search author on:PubMed Google Scholar

  29. Siying Zheng
    View author publications

    Search author on:PubMed Google Scholar

  30. Huan Liu
    View author publications

    Search author on:PubMed Google Scholar

  31. Haiwen Xu
    View author publications

    Search author on:PubMed Google Scholar

  32. Can Liu
    View author publications

    Search author on:PubMed Google Scholar

  33. Zhihao Shen
    View author publications

    Search author on:PubMed Google Scholar

  34. Xiaoxi Li
    View author publications

    Search author on:PubMed Google Scholar

  35. Bochang Li
    View author publications

    Search author on:PubMed Google Scholar

  36. Zheng-Dong Luo
    View author publications

    Search author on:PubMed Google Scholar

  37. Jiuren Zhou
    View author publications

    Search author on:PubMed Google Scholar

  38. Yan Liu
    View author publications

    Search author on:PubMed Google Scholar

  39. Yue Hao
    View author publications

    Search author on:PubMed Google Scholar

  40. Genquan Han
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Genquan Han.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zhong, N., Cheng, Y. et al. Ferroelectric materials, devices, and chips technologies for advanced computing and memory applications: development and challenges. Sci. China Inf. Sci. 68, 160401 (2025). https://doi.org/10.1007/s11432-025-4432-x

Download citation

  • Received: 10 March 2025

  • Revised: 07 May 2025

  • Accepted: 08 May 2025

  • Published: 26 May 2025

  • DOI: https://doi.org/10.1007/s11432-025-4432-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • erroelectric
  • HfO2
  • zirconium oxide
  • ZrO2
  • wurtzite
  • AlScN
  • FeRAM
  • FeFET

Profiles

  1. Tianyu Wang View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

172.70.80.51

ICE Institution of Civil Engineers (3000167333) - Institution of Civil Engineers Library (2000027800)

Springer Nature

© 2025 Springer Nature