Skip to main content
Log in

Characterization of toll-like receptors 1–10 in spotted hyenas

  • Short Communication
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Previous research has shown that spotted hyenas (Crocuta crocuta) regularly survive exposure to deadly pathogens such as rabies, canine distemper virus, and anthrax, suggesting that they have robust immune defenses. Toll-like receptors (TLRs) recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses. TLR genes are evolutionarily conserved, and assessing TLR expression in various tissues can provide insight into overall immunological organization and function. Studies of the hyena immune system have been minimal thus far due to the logistical and ethical challenges of sampling and preserving the immunological tissues of this and other long-lived, wild species. Tissue samples were opportunistically collected from captive hyenas humanely euthanized for a separate study. We developed primers to amplify partial sequences for TLRs 1–10, sequenced the amplicons, compared sequence identity to those in other mammals, and quantified TLR expression in lymph nodes, spleens, lungs, and pancreases. Results show that hyena TLR DNA and protein sequences are similar to TLRs in other mammals, and that TLRs 1–10 were expressed in all tissues tested. This information will be useful in the development of new assays to understand the interactions among the hyena immune system, pathogens, and the microbial communities that inhabit hyenas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

References

  • Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M (2001) Decreased expression of toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barton GM, Kagan JC (2009) A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9:535–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B, Flavell R, Strittmatter SM, Volpe J, Sidman R, Vartanian T (2007) Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 27:13033–13041

    Article  CAS  PubMed  Google Scholar 

  • Cowled C, Baker M, Tachedjian M, Zhou P, Bulach D, Wang LF (2011) Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Dev Comp Immunol 35:7–18

    Article  CAS  PubMed  Google Scholar 

  • Crozat K, Beutler B (2004) TLR7: A new sensor of viral infection. Proc Natl Acad Sci U S A 101:6835–6836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • East ML, Hofer H, Cox JH, Wulle U, Wiik H, Pitra C (2001) Regular exposure to rabies virus and lack of symptomatic disease in Serengeti spotted hyenas. Proc Natl Acad Sci U S A 98:15026–15031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engh AL, Funk SM, Horn RCV, Scribner KT, Bruford MW, Libants S, Szykman M, Smale L, Holekamp KE (2002) Reproductive skew among males in a female-dominated mammalian society. Behav Ecol 13:193–200

    Article  Google Scholar 

  • Flies AS, Grant CK, Mansfield LS, Smith EJ, Weldele ML, Holekamp KE (2012) Development of a hyena immunology toolbox. Vet Immunol Immunopathol 145:110–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franchini M, Zini E, Osto M, Jablonski K, Kaufmann K, Lutz TA, Reusch CE, Ackermann M (2010) Feline pancreatic islet-like clusters and insulin producing cells express functional Toll-like receptors (TLRs). Vet Immunol Immunopathol 138:70–78

    Article  CAS  PubMed  Google Scholar 

  • Harrison TM, Mazet JK, Holekamp KE, Dubovi E, Engh AL, Nelson K, Van Horn RC, Munson L (2004) Antibodies to canine and feline viruses in spotted hyenas (Crocuta crocuta) in the Masai, Mara National Reserve. J Wildl Dis 40:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ignacio G, Nordone S, Howard KE, Dean GA (2005) Toll-like receptor expression in feline lymphoid tissues. Vet Immunol Immunopathol 106:229–237

    Article  CAS  PubMed  Google Scholar 

  • Knudsen B, Knudsen T, Flensborg M, Sandmann H, Heltzen M, Andersen A, Dickenson M, Bardram J, Steffensen PJ, Mønsted S, Lauritzen T, Forsberg R, Thanbichler A, Bendtsen JD, Görlitz L, Rasmussen J, Tordrup D, Værum M, Ravn MN, Hachenberg C, Fisker E, Dekker P, de Meza J, Hein A-MK, Sinding JB, Quorning J, Hvam K, Mikkelsen S, Liboriussen P, Grydholt J, Handberg H, Bundgaard M, Joecker A, Simonsen M, Nielsen PRL, Joecker A, Fleischer P, Jakobsen J, Juul S, Appelt U, Fejes A, Christensen AS (2012) CLC Sequence Viewer, 6.7.1 ed. CLC bio

  • Lembo T, Hampson K, Auty H, Beesley CA, Bessell P, Packer C, Halliday J, Fyumagwa R, Hoare R, Ernest E, Mentzel C, Mlengeya T, Stamey K, Wilkins PP, Cleaveland S (2011) Serologic surveillance of anthrax in the Serengeti ecosystem, Tanzania, 1996–2009. Emerg Infect Dis 17:387–394

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335:936–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ménager P, Roux P, Mégret F, Bourgeois J-P, Le Sourd A-M, Danckaert A, Lafage M, Préhaud C, Lafon M (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus negri bodies. PLoS Pathog 5:e1000315

    Article  PubMed Central  PubMed  Google Scholar 

  • Mercier E, Peters IR, Day MJ, Clercx C, Peeters D (2012) Toll- and NOD-like receptor mRNA expression in canine sino-nasal aspergillosis and idiopathic lymphoplasmacytic rhinitis. Vet Immunol Immunopathol 145:618–624

    Article  CAS  PubMed  Google Scholar 

  • Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K, Akira S (2000) Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 164:3476–3479

    Article  CAS  PubMed  Google Scholar 

  • Opal S, Huber C (2002) Bench-to-bedside review: toll-like receptors and their role in septic shock. Critical Care 6:125–136

    Article  PubMed Central  PubMed  Google Scholar 

  • Penning LC, Vrieling HE, Brinkhof B, Riemers FM, Rothuizen J, Rutteman GR, Hazewinkel HAW (2007) A validation of 10 feline reference genes for gene expression measurements in snap-frozen tissues. Vet Immunol Immunopathol 120:212–222

    Article  CAS  PubMed  Google Scholar 

  • Raja A, Vignesh AR, Mary BA, Tirumurugaan KG, Raj GD, Kataria R, Mishra BP, Kumanan K (2011) Sequence analysis of Toll-like receptor genes 1-10 of goat (Capra hircus). Vet Immunol Immunopathol 140:252–258

    Article  CAS  PubMed  Google Scholar 

  • Roach J, Glusman G, Rowen L, Kaur A, Purcell M, Smith K, Hood L, Aderem A (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8:889–895

    Article  CAS  PubMed  Google Scholar 

  • Siegemund S, Sauer K (2012) Balancing pro- and anti-inflammatory TLR4 signaling. Nat Immunol 13:1031–1033

    Article  CAS  PubMed  Google Scholar 

  • Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM (2013) Symbiotic bacteria appear to mediate hyena social odors. Proc Nat Acad Sci 110:19832–19837

    Article  CAS  PubMed  Google Scholar 

  • Van Horn RC, Engh AL, Scribner KT, Funk SM, Holekamp KE (2004) Behavioural structuring of relatedness in the spotted hyena (Crocuta crocuta) suggests direct fitness benefits of clan-level cooperation. Mol Ecol 13:449–458

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Dr. Stephen E. Glickman and the staff of the Field Station for Behavioral Research at UC Berkeley for their assistance with tissue collection from the captive hyenas, Dr. Julia Bell for her advice on laboratory procedures, and Dr. Barry Williams for his comments on the research. This work was supported by Award No. W911NF-08-1-0310 from the Army Research Office and NSF Grants IOS1121474 and IOS0819437 to KEH, NSF Grant IOS0809914 to SEG, NIH grant K26RR023080 to LSM, grants-in-aid-of research from Sigma Xi and the American Society of Mammalogists to ASF, veterinary student scholars program from the Morris Animal Foundation, and a NSF Graduate Research Fellowship to ASF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Flies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flies, A.S., Maksimoski, M.T., Mansfield, L.S. et al. Characterization of toll-like receptors 1–10 in spotted hyenas. Vet Res Commun 38, 165–170 (2014). https://doi.org/10.1007/s11259-014-9592-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11259-014-9592-3

Keywords

Profiles

  1. Andrew S. Flies