Skip to main content
Log in

Intratetrad mating and its genetic and evolutionary consequences

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic characteristics of intratetrad mating, i.e., fusion of haploid products of one meiotic division, are considered. Upon intratetrad mating, the probability of homozygotization is lower than that upon self-fertilization, while heterozygosity at genes linked to the mating-type locus, which determines the possibility of cell fusion, is preserved. If the mating-type locus is linked to the centromere, the genome regions adjoining the centromeres of all chromosomes remain heterozygous. Intratetrad mating is characteristic of a number of fungi (Saccharomyces cerevisiae, Saccharomycodes ludwigii, Neurospora tetrasperma, Agaricus bisporus, Microbotryum violaceum, and others). Parthenogenetic reproduction in some insects also involves this type of fusion of nuclei. Intratetrad mating leads to the accumulation of haplolethals (i.e., lethals manifesting in haploid cells but not hindering their mating) in pericentric chromosome regions. Since heterozygosity increases viability of an organism, recombination has been suppressed during evolution in fungi characterized by intratetrad mating, which ensures heterozygosity of the most part of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mogie, M., Automixis: Its Distribution and Status, Biol. J. Linn. Soc., 1986, vol. 28, pp. 321–329.

    Google Scholar 

  2. Zakharov, I.A., Genetic Consequences of Intratetrad Mating of Ascospores in Yeasts, Vestn. Leningr. Univ., 1965, no. 9, pp. 124–129.

  3. Zakharov, I.A., Increase in Homozygosity as a Result of Intratetrad and Intraoctad Fertilization in Fungi, Genetika (Moscow), 1968, vol. 4, pp. 98–105.

    Google Scholar 

  4. Hogben, L., An Introduction to Mathematical Genetics, New York: Norton, 1946.

    Google Scholar 

  5. Li, C.C., Population Genetics, Chicago: Univ. of Chicago Press, 1955.

    Google Scholar 

  6. Kempthorne, O., An Introduction to Genetic Statistics, New York: Wiley, 1957.

    Google Scholar 

  7. Zakharov, I.A., Mating Analysis in Microorganisms upon Sexual or Asexual Reproduction, in Genetika i selektsiya mikroorganizmov (Genetics and Selection of Microorganisms), Moscow: Nauka, 1964, p. 61.

    Google Scholar 

  8. Zakharov, I.A. and Matselyukh, B.P., Geneticheskie karty mikroorganizmov (Genetic Maps of Microorganisms), Kiev: Naukova Dumka, 1986.

    Google Scholar 

  9. Emerson, E., Meiotic Recombination in Fungi with Special Reference to Tetrad Analysis, in Methodology in Basic Genetics, San Francisco: Holden-Day, 1963, p. 167.

    Google Scholar 

  10. Lindegren, C.C., The Yeast Cell, Its Genetics and Cytology, St. Louis: Educational Publ., 1949.

    Google Scholar 

  11. Perkins, D.D., Biochemical Mutants in the Smut Fungus Ustilago maydis, Genetics, 1949, vol. 34, p. 607.

    CAS  Google Scholar 

  12. Rizet, G. and Engelmann, C., Contribution á l’étude génétique d’un Ascomycéte Tétrasporé: Podospora anserine (Ces.) Rehm., Rev. Cytol. Biol. Veget., 1949, vol. 11, p. 201.

    Google Scholar 

  13. Papazian, H., The Analysis of Tetrad Data, Genetics, 1952, vol. 37, p. 175.

    Google Scholar 

  14. Kirby, G.C., Breeding Systems and Heterozygosity in Populations of Tetrad-Forming Fungi, Heredity, 1984, vol. 52, p. 35.

    Google Scholar 

  15. Santa Maria, J., Polyploidy in Yeasts, Nature, 1958, vol. 181, p. 1740.

    CAS  Google Scholar 

  16. Sansome, E.R., Maintenance of Heterozygosity in a Homothallic Species of the Neurospora tetrasperma Type, Nature, 1946, vol. 157, p. 484.

    Google Scholar 

  17. Catcheside, D.G., The Genetics of Microorganisms, London: Pitman, 1951.

    Google Scholar 

  18. Howe, H.D., Markers and Centromere Distances in Neurospora tetrasperma, Genetics, 1963, vol. 48, p. 121.

    PubMed  Google Scholar 

  19. Brefeld, O., Botanische Untersuchungen uber Hefenpilze: V. Die Brandpilze, Leipzig: Arthur Felix, 1883 (cited from [21]).

    Google Scholar 

  20. Harper, R.A., Nuclear Phenomena in Certain Stages in the Development of the Smuts, Trans. Wisconsin Acad. Sci. Arts Lett., 1899, vol. 12, pp. 475–498 (cited from [21]).

    Google Scholar 

  21. Oudemans, P.V., Alexander, H.M., Antonovics, J., et al., The Distribution of Mating-Type Bias in Natural Populations of the Anther-Smut Ustilago violacea on Silene alba in Virginia, Mycologia, 1998, vol. 90, pp. 372–381.

    Google Scholar 

  22. Guilliermond, M.A., Recherches sur la germination des spores et la conjugasion chez les levures, Rev. Gen. Bot., 1905, vol. 509, p. 337.

    Google Scholar 

  23. Whitehouse, H.L.K., Heterothallism and Sex in the Fungi, Biol. Rev., 1949, vol. 24, p. 411.

    Google Scholar 

  24. Merino, S.T., Nelson, M.A., Jacobson, D.J., and Natvig, D.O., Pseudohomothallism and Evolution of the Mating-Type Chromosome in Neurospora tetrasperma, Genetics, 1996, vol. 143, pp. 789–799.

    CAS  PubMed  Google Scholar 

  25. Yamazaki, T., Ohara, Y., and Oshima, Y., Rare Occurrence of the Tetratype Tetrads in Saccharomycodes ludwigii, J. Bacteriol., 1976, vol. 125, p. 461.

    CAS  PubMed  Google Scholar 

  26. Coluccio, A. and Neiman, A.M., Interspore Bridges: A New Feature of the Saccharomyces cerevisiae Spore Wall, Microbiology, 2004, vol. 150, pp. 3189–3196.

    Article  CAS  PubMed  Google Scholar 

  27. James, A.P., The Spectrum of Severity of Mutant Effects: Haploid Effects in Yeast, Genetics, 1959, vol. 44, p. 1309.

    Google Scholar 

  28. Inge-Vechtomov, S.G., New Genetic Strains of Yeast Saccharomyces cerevisiae, Vestn. Leningr. Univ., 1963, no. 21, p. 117.

  29. Nielsen, J., Isolation and Culture of Monokaryotic Haploids of Ustilago nuda, the Role of Proline in Their Metabolism and the Inoculation of Barley with Resynthesized Dikaryons, Can. J. Bot., 1968, vol. 46, pp. 1193–1200.

    CAS  Google Scholar 

  30. Garber, E.D. and Day, A.W., Genetic Mapping of a Phytopathogenic Basidiomycete, Ustilago violacea, Bot. Gaz., 1985, vol. 146, pp. 449–459.

    Google Scholar 

  31. Garber, E.D., Eng, C., and Stevens, D.M., Genetics of Ustilago violacea: XXI. Centromere-Linkage Values and Pericentric Gene Clustering, Curr. Genet., 1987, vol. 12, pp. 555–560.

    Article  Google Scholar 

  32. Hood, M.E. and Antonovics, J., Intratetrad Mating, Heterozygosity, and the Maintenance of Deleterious Alleles in Microbobotryum violaceum (= Ustilago violacea), Heredity, 2000, vol. 85, pp. 231–241.

    Article  PubMed  Google Scholar 

  33. Thomas, A., Shykoff, J., Jonot, O., and Giraud, T., Sex-Ratio Bias in Populations of the Phytopathogenic Fungus Microbotryum violaceum from Several Host Species, Int. J. Plant Sci., 2003, vol. 164, pp. 641–647.

    Article  Google Scholar 

  34. Hood, M.E. and Antonovics, J., Mating within the Meiotic Tetrad and the Maintenance of Genomic Heterozygosity, Genetics, 2004, vol. 166, pp. 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  35. Antonovics, J., O’Keefe, K., and Hood, M.E., Theoretical Population Genetics of Mating-Type Linked Haplo-Lethal Alleles, Int. J. Plant Sci., 1998, vol. 159, pp. 192–198.

    Article  Google Scholar 

  36. Antonovics, J. and Abrams, J.Y., Intratetrad Mating and the Evolution of Linkage Relationships, Evolution, 2004, vol. 58, pp. 702–709.

    PubMed  Google Scholar 

  37. Zakharov, I.A., Several Regularities of Gene Location in Eukaryotic Chromosomes, Genetika (Moscow), 1986, vol. 22, no.12, pp. 2620–2624.

    CAS  PubMed  Google Scholar 

  38. Kerrigan, R.W., Imbernon, M., Callac, P., et al., The Heterothallic Life Cycle of Agaricus bisporus var. burnettii and Inheritance of Its Tetrasporic Trait, Exp. Mycol., 1994, vol. 18, pp. 193–210.

    Article  Google Scholar 

  39. Volkova, V.N., Kamzolkina, O.V., Kozlova, M.V., and D’yakov, Yu.T., Comparative Karyology of Agaricus bisporus Strains with Different Types of the Life Cycle, Mikol. Fitopatol., 2003, vol. 37, pp. 30–41.

    Google Scholar 

  40. Callac, P., de Haut, I.J., Imbernon, M., and Guinberteau, J., A Novel Homothallic Variety of Agaricus bisporus Comprises Rare Tetrasporic Isolates from Europe, Mycologia, 2003, vol. 95, pp. 222–231.

    CAS  Google Scholar 

  41. Callac, P., Billette, C., Imbernon, M., and Kerrigan, R.W., Morphological, Genetic, and Interfertility Analyses Reveal a Novel, Tetrasporic Variety of Agaricus bisporus from the Sonoran Desert of California, Mycologia, 1993, vol. 85, pp. 835–851.

    Google Scholar 

  42. Callac, P., Imbernon, M., Kerrigan, R.W., and Olivier, J.-M., The Two Life Cycles of Agaricus bisporus, Mushroom Biology and Mushroom Products, Royse, D.J., Ed., Pennsylvania: Pennsylvania Univ. Press, 1996, pp. 57–66.

    Google Scholar 

  43. Sommerbell, R.C., Castle, A.J., Horgen, P.A., et al., Inheritance of Restriction Fragment Length Polymorphisms in Agaricus brunnescens, Genetics, 1989, vol. 123, pp. 293–300.

    PubMed  Google Scholar 

  44. Kerrigan, R.W., Royer, J.C., Baller, L.M., et al., Meiotic Behavior and Linkage Relationships in the Secondarily Homothallic Fungus Agaricus bisporus, Genetics, 1993, vol. 133, pp. 225–236.

    CAS  PubMed  Google Scholar 

  45. Asher, J.H., Parthenogenesis and Genetic Variability: II. One-Locus Models for Various Diploid Populations, Genetics, 1970, vol. 66, pp. 369–391.

    PubMed  Google Scholar 

  46. Murdy, W.H. and Carson, H.L., Parthenogenesis in Drosophila mangabeirai Malog, Am. Nat., 1959, vol. 43, pp. 355–363.

    Article  Google Scholar 

  47. Stalker, H.D., On the Evolution of Parthenogenesis in Lonchoptera (Diptera), Evolution, 1956, vol. 10, pp. 345–359.

    Google Scholar 

  48. Baudry, E., Kryger, P., Allsopp, M., et al., Whole-Genome Scan in Thelytokous-Laying Workers of the Cape Honeybee (Apis mellifera capensis): Central Fusion, Reduced Recombination Rates and Centromere Mapping Using Half-Tetrad Analyses, Genetics, 2004, vol. 167, pp. 243–252.

    Article  CAS  PubMed  Google Scholar 

  49. Nace, G.W., Richards, C.M., and Asher, J.H., Parthenogenesis and Genetic Variability: I. Linkage and Inbreeding Estimations in the Frog, Rana pipiens, Genetics, 1970, vol. 66, pp. 349–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 4, 2005, pp. 508–519.

Original Russian Text Copyright © 2005 by Zakharov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, I.A. Intratetrad mating and its genetic and evolutionary consequences. Russ J Genet 41, 402–411 (2005). https://doi.org/10.1007/s11177-005-0103-z

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11177-005-0103-z

Keywords