Skip to main content
Log in

Highly Size-Selective Water-Insoluble Cross-Linked Carboxymethyl Cellulose Membranes

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Carboxymethyl cellulose (CMC) membranes have strong potential for application as molecular-scale separators. For this study, stable CMC membranes were fabricated with aluminum chloride (AlCl3) and iron(III) chloride (FeCl3) serving as cross-linkers. The resulting CMC-Al and CMC-Fe membranes were optically transparent and water-insoluble with sufficient mechanical strength for practical applications. The water permeation flux through the membranes was directly proportional to the operating pressure. With just a 10-fold increase in the molecular weight from 60 Da (urea) to 604 Da (bordeaux S), the effective diffusion coefficient (Deff) of the CMC-Al membrane increased 56-fold, and that of the CMC-Fe membrane increased 3500-fold. This significant correlation between Deff on molecular size indicated that the sizes of the mass transfer channels through the membrane were strictly monodisperse, in the range of molecular sizes that were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A c :

Initial cross-sectional area of membrane [m2]

A m :

Effective area of membrane [m2]

C fi :

Initial concentration of the feed solution [mol/L]

C s :

Concentration of the stripping solution [mol/L]

D :

Diffusion coefficient estimated from an empirical equation in bulk aqueous phase [m2/s]

D eff :

Effective diffusion coefficient of membrane [m2/s]

d :

Diameter of the glass petri dish [m]

F max :

Maximum load at rupture [N]

H V :

Volumetric water content of membrane, as defined by Eq. (1) [-]

J V :

Volumetric water flux [\({\text{m}}_{\text{water}}^{3}\)/(\({\text{m}}_{\text{area}}^{2}\) s)]

K OL :

Overall mass transfer coefficient [m/s]

K −1 OL :

Overall mass transfer resistance [(m/s)−1]

k −1 L1 :

Membrane mass transfer resistance on feed side [(m/s)−1]

k −1 L2 :

Membrane mass transfer resistance on stripping side [(m/s)−1]

k m :

Membrane mass transfer coefficient [m/s]

k −1 m :

Membrane mass transfer resistance [(m/s)−1]

L :

Length of membrane at rupture [m]

L i :

Initial length of membrane [m]

L p :

Water permeability coefficient [\({\text{m}}_{\text{water}}^{3}\)/(\({\text{m}}_{\text{area}}^{2}\) Pa s)]

l m :

Initial thickness of swollen membrane [m]

M P :

Mass of permeated water [kg]

MW:

Molecular weight [Da]

ΔP :

Operating pressure [Pa]

t :

Operating time [s]

V :

Volume of aqueous phase in each transfer cell [m3]

V p :

Volumetric amount of permeated water [m3]

w d :

Mass of the dried membrane [kg]

w s :

Mass of the swollen membrane [kg]

δ :

Tensile strength [Pa]

λ :

Maximum strain [%]

ΔΠ :

Osmotic pressure [Pa]

ρ s :

Apparent density of the swollen membrane [kg/m3]

ρ w :

Density of water [kg/m3]

σ :

Reflection coefficient of solute [-]

τ :

Tortuosity of the membrane [-]

References

  1. Arthanareeswaran G, Thanikaivelan P, Srinivasn K, Mohan D, Rajendran M (2004) Eur Polym J 40:2153–2159

    Article  CAS  Google Scholar 

  2. Baker RW (ed) (2012) 3rd membrane technology and applications. Wiley, Chichester

    Google Scholar 

  3. Yang Z, Ma XH, Tang CY (2018) Desalination 434:37–59

    Article  CAS  Google Scholar 

  4. Pan K, Zhang X, Ren R, Cao B (2010) J Membr Sci 356:133–137

    Article  CAS  Google Scholar 

  5. Petrychkovych R, Setnickova K, Uchytil P (2013) Sep Purif Technol 107:85–90

    Article  CAS  Google Scholar 

  6. Nomura M, Sakanishi T, Utsumi YNK, Nakamura R (2013) Energy Procedia 37:1004–1011

    Article  CAS  Google Scholar 

  7. Lue SJ, Chen CH, Shih CM, Tsai MC, Kuo CY, Lai JY (2011) J Membr Sci 379:330–340

    Article  CAS  Google Scholar 

  8. Gierszewska M, Ostrowska-Czubenko J, Chrzanowska E (2018) Eur Polym J 101:282–290

    Article  CAS  Google Scholar 

  9. Wandera D, Wickramasinghe SR, Husson SM (2011) J Membr Sci 373:178–188

    Article  CAS  Google Scholar 

  10. Kadhom M, Deng B (2018) Appl Mater Today 11:219–230

    Article  Google Scholar 

  11. Liu M, Yu S, Tao J, Gao C (2008) J Membr Sci 325:947–956

    Article  CAS  Google Scholar 

  12. Liu B, Law AWK, Zhou K (2018) J Membr Sci 550:554–562

    Article  CAS  Google Scholar 

  13. Wu C, Wu Y, Luo J, Xu T, Fu Y (2010) J Membr Sci 356:96–104

    Article  CAS  Google Scholar 

  14. Xiong X, Duan J, Zou W, He X, Zheng W (2010) J Membr Sci 363:96–102

    Article  CAS  Google Scholar 

  15. Ibrahim MM, Koschella A, Kadry G, Heinze T (2013) Carbohydr Polym 95:414–420

    Article  CAS  Google Scholar 

  16. Sukma FM, Çulfaz-Emecen PZC (2018) J Membr Sci 545:329–336

    Article  CAS  Google Scholar 

  17. Hofman JAMH, Beerendonk EF, Folmer HC, Kruithof JC (1997) Desalination 113:209–214

    Article  CAS  Google Scholar 

  18. Murphy AP, Moody CD, Riley R, Lin SW, Murugaverl B, Rusin P (2001) J Membr Sci 193:111–121

    Article  CAS  Google Scholar 

  19. Sayed SE, Mahmoud KH, Fatah AA, Hassen A (2011) Phys B 406:4068–4076

    Article  Google Scholar 

  20. Hatanaka D, Yamamoto K, Kadokawa J (2014) Int J Biol Macromol 69:35–38

    Article  CAS  Google Scholar 

  21. Chen YM, Sun L, Yang SA, Shi L, Zheng WJ, Wei Z, Hu C (2017) Eur Polym J 94:501–510

    Article  CAS  Google Scholar 

  22. Liu Q, Zhang Y, Laskowski JS (2000) Int J Miner Process 60:229–245

    Article  CAS  Google Scholar 

  23. Corin KC, Harris PJ (2010) Miner Eng 23:915–920

    Article  CAS  Google Scholar 

  24. Pugh RJ (1989) Int J Miner Process 25:101–130

    Article  CAS  Google Scholar 

  25. Rodgers KE, Robertson JT, Espinoza T, Oppelt W, Cortese S, diZerega GS, Berg RA (2003) Spine J 3:277–284

    Article  Google Scholar 

  26. Huei GOS, Muniyandy S, Sathasivam T, Veeramachineni AK, Janarthanan P (2016) Chem Pap 70:243–252

    CAS  Google Scholar 

  27. Nie H, Liu M, Zhan F, Guo M (2004) Carbohydr Polym 58:185–189

    Article  CAS  Google Scholar 

  28. Chitprasert P, Sudsai P, Rodklongtan A (2012) Carbohydr Polym 90:78–86

    Article  CAS  Google Scholar 

  29. Sathasivam T, Muniyandy S, Chuah LH, Janarthanan P (2018) J Food Eng 231:10–21

    Article  CAS  Google Scholar 

  30. Iannuccelli V, Fomi F, Vandelli MA, Bernabei MT, Forni F (1993) J Control Release 23:13–20

    Article  CAS  Google Scholar 

  31. Hosny EA, Al-Helw AA (1998) Pharm Acta Helv 72:255–261

    Article  CAS  Google Scholar 

  32. Wu P, Imai M (2013) Desalin Water Treat 51:5237–5247

    Article  CAS  Google Scholar 

  33. Kashima K, Imai M (2017) Food Bioprod Process 102:213–221

    Article  CAS  Google Scholar 

  34. Takahashi T, Imai M, Suzuki I (2008) Biochem Eng J 42:20–27

    Article  CAS  Google Scholar 

  35. Sarkar C, Chowdhuri AR, Kumar A, Laha D, Garai S, Chakraborty J, Sahu SK (2018) Carbohydr Polym 181:710–718

    Article  CAS  Google Scholar 

  36. Zhang W, Yu Z, Qian Q, Zhang Z, Wang X (2010) J Membr Sci 348:213–223

    Article  CAS  Google Scholar 

  37. Boricha AG, Murthy ZVP (2010) Chem Eng J 157:393–400

    Article  CAS  Google Scholar 

  38. Kedem O, Katchalsky A (1963) Trans Faraday Soc 59:1918–1930

    Article  Google Scholar 

  39. Mehiguene K, Garba Y, Taha S, Gondrexon N, Dorange G (1999) Sep Purif Technol 15:181–187

    Article  CAS  Google Scholar 

  40. Wu P, Imai M (2011) Desalin Water Treat 34:239–245

    Article  CAS  Google Scholar 

  41. So MT, Eirich FR, Strathmann H, Baker RW (1973) J Polymer Sci Polym Lett Ed 11:201–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo-ichi Nakayama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Ri., Yano, T., Namiki, N. et al. Highly Size-Selective Water-Insoluble Cross-Linked Carboxymethyl Cellulose Membranes. J Polym Environ 27, 2439–2444 (2019). https://doi.org/10.1007/s10924-019-01532-w

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10924-019-01532-w

Keywords