Skip to main content
Log in

The other eukaryotes in light of evolutionary protistology

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

In order to introduce protists to philosophers, we outline the diversity, classification, and evolutionary importance of these eukaryotic microorganisms. We argue that an evolutionary understanding of protists is crucial for understanding eukaryotes in general. More specifically, evolutionary protistology shows how the emphasis on understanding evolutionary phenomena through a phylogeny-based comparative approach constrains and underpins any more abstract account of why certain organismal features evolved in the early history of eukaryotes. We focus on three crucial episodes of this history: the origins of multicellularity, the origin of sex, and the origin of the eukaryote cell. Despite ongoing uncertainty about where the root of the eukaryote tree lies, and residual questions about the precise endosymbioses that have produced a diversity of photosynthesizing eukaryotes, evolutionary protistology has illuminated with considerable clarity many aspects of protist evolution. Our main message in light of evolutionary protistology is that these ‘other eukaryotes’ are in fact the organisms through which the rest of the eukaryotes should be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The ‘five kingdom system’ is often attributed to Whittaker (1969). However, his version intentionally included polyphyletic (not sharing a recent common ancestor) higher kingdoms and thus differs significantly in structure from the five-kingdom system popularized between the 1970s and 1990s. This more familiar version was proposed by Lynn Margulis (1971), who respectfully modified Whittaker’s scheme so that animals, plants and fungi were each potentially monophyletic, in effect by moving several groups to Protista from either fungi or plants.

  2. Encephalitozoon intestinalis (a microsporidian) is the parasite with the smallest known protist genome; Gonyaulax polyedra (a dinoflagellate) has the largest reliably estimated genome (Gregory 2007). Even amongst parasitic protists (expected to have smaller genomes), there is considerable variation from just over two million base pairs to 160 million (Zubáčová et al. 2008). However, the size range of protist genomes is currently understood from very limited data (Gregory et al. 2007), and some earlier reports of extraordinarily large genomes in amoeba seem to be incorrect (Gregory 2005).

  3. Roughly half of the dinoflagellates are photosynthetic. The remainder are free-living or parasitic heterotrophs.

  4. Permanent anaerobiosis, the loss of the ability to use oxygen as a terminal electron acceptor during energy metabolism, has evolved a number of times in eukaryote evolution. There are particularly successful lineages of anaerobes in Excavata, but the property is not unique to this supergroup.

  5. However, see Dickinson et al. (2012) for a suggestion that the various instances of multicellularity in Amorphea, usually considered ‘independent’, can be collapsed into a common origin. The current understanding of the deep-level diversity and phylogeny of Amorphea (e.g., Kim et al. 2006; Katz et al. 2012) makes this idea relatively unparsimonious.

  6. HJC published as James-Clark; his actual surname was Clark even though this was his mother’s family name (his father’s was Porter).

  7. Saville Kent also hyphenated his name occasionally; Saville was a second forename but he used it as the first part of his surname.

  8. Integrin-related proteins have been found in bacteria as well as protists. In the former, their role is tentatively hypothesized as intracellular signaling (Chouhan et al. 2011).

References

  • Abedin M, King N (2008) The premetazoan ancestry of cadherins. Science 319:946–948

    Article  Google Scholar 

  • Abedin M, King N (2010) Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20:734–742

    Article  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Boswer SS, Brugerolle G, Fensome RA, Fredericq S et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  Google Scholar 

  • Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  Google Scholar 

  • Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N et al (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324:265–268

    Article  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  Google Scholar 

  • Archibald JM (2011) Origin of eukaryotic cells: 40 years on. Symbiosis 54:69–86

    Article  Google Scholar 

  • Armus HL, Montgomery AR, Gurney RL (2006) Discrimination learning and extinction in paramecia (P. caudatum). Psychol Rep 98:705–711

    Article  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11662

    Article  Google Scholar 

  • Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Duruflé L, Gaasterland T, Lopez P, Müller M, Philippe H (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA 99:1414–1419

    Article  Google Scholar 

  • Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990

    Article  Google Scholar 

  • Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709

    Article  Google Scholar 

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  • Bengtson S (2002) Origins and early evolution of predation. Paleontol Soc Pap 8:289–317

    Google Scholar 

  • Bonner JT (1998) The origins of multicellularity. Integr Biol 1:27–36

    Article  Google Scholar 

  • Boraas ME, Seale DB, Boxhorn JE (1998) Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol Ecol 12:153–164

    Article  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the ‘forgotten’ cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709

    Article  Google Scholar 

  • Brown MW, Kolisko M, Silberman JD, Roger AJ (2012) Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr Biol 22:1123–1127

    Article  Google Scholar 

  • Brugerolle G, Bricheux G, Philippe H, Doffe G (2002) Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153:59–70

    Article  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 8:e790

    Article  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    Article  Google Scholar 

  • Burki F, Okamoto N, Pombert J-F, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc R Soc Lond B. doi:10.1098.rspb.2011.2301

    Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Calcott B (2009) Lineage explanations: explaining how biological mechanisms change. Brit J Philos Sci 60:51–78

    Article  Google Scholar 

  • Calcott B (2011) Alternative patterns of explanation for major transitions. In: Calcott B, Sterelny K (eds) The major transitions in evolution revisited. MIT Press, Cambridge, pp 35–51

    Google Scholar 

  • Calcott B, Sterelny K (eds) (2011a) The major transitions in evolution revisited. MIT Press, Cambridge

    Google Scholar 

  • Calcott B, Sterelny K (2011b) Introduction: a dynamic view of evolution. In: Calcott B, Sterelny K (eds) The major transitions in evolution revisited. MIT Press, Cambridge, pp 1–14

    Google Scholar 

  • Carr M, Leadbeater BSC, Hassan R, Nelson M, Baldauf SL (2008) Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci USA 105:16641–16646

    Article  Google Scholar 

  • Carr M, Leadbeater BSC, Baldauf SL (2010) Conserved meiotic genes point to sex in the choanoflagellates. J Eukaryot Microbiol 57:56–62

    Article  Google Scholar 

  • Cavalier-Smith T (1987a) The origin of fungi and pseudofungi. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of fungi. Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Cavalier-Smith T (1987b) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503:55–71

    Article  Google Scholar 

  • Cavalier-Smith T (1995) Cell cycles, diplokaryosis and the archezoan origin of sex. Arch Protistenkd 145:189–207

    Article  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  Google Scholar 

  • Cavalier-Smith T (2002a) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Bacteriol 52:297–354

    Google Scholar 

  • Cavalier-Smith T (2002b) Origins of the machinery of recombination and sex. Heredity 88:124–141

    Article  Google Scholar 

  • Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19. doi:10.1186/1745-6150-1-19

    Article  Google Scholar 

  • Cavalier-Smith T (2009) Predation and eukaryote cell origins: a coevolutionary perspective. Int J Biochem Cell Biol 41:307–322

    Article  Google Scholar 

  • Cavalier-Smith T (2010a) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345

    Article  Google Scholar 

  • Cavalier-Smith T (2010b) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 5:7

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EE-Y (1995) The opalozoan Apusomonas is related to the common ancestor of animals, fungi, and choanoflagellates. Proc R Soc Lond B 261:1–6

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EE-Y, Oates B (2004) Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur J Protistol 40:21–48

    Article  Google Scholar 

  • Chouhan B, Denesyuk A, Heino J, Johnson MS, Denessiouk K (2011) Conservation of the human integrin-type beta-propeller domain in bacteria. PLoS One 6(10):e25069

    Article  Google Scholar 

  • Churchill FB (1989) The guts of the matter: infusoria from Ehrenberg to Bütschli: 1838–1876. J Hist Biol 22:189–213

    Article  Google Scholar 

  • Churchill FB (2011) August Weismann embraces the protozoa. J Hist Biol 43:767–800

    Article  Google Scholar 

  • Cleland CE (2001) Historical science, experimental science, and the scientific method. Geology 29:987–990

    Article  Google Scholar 

  • Cleland CE (2002) Methodological and epistemic differences between historical science and experimental science. Philos Sci 69:474–496

    Article  Google Scholar 

  • Cooper MA, Adam RD, Worobey M, Sterling CR (2007) Population genetics provides evidence for recombination in Giardia. Curr Biol 17:1984–1988

    Article  Google Scholar 

  • Corlis JO (2002) Biodiversity and biocomplexity of the protists and an overview of their significant roles in the maintenance of our biosphere. Acta Protozool 41:199–219

    Google Scholar 

  • Corliss JO (1989) The protozoon and the cell: a brief twentieth-century overview. J Hist Biol 22:307–323

    Article  Google Scholar 

  • Crotty FV, Adl SM, Blackshaw RP, Murray PJ (2012) Protozoan pulses unveil their pivotal position within the soil food web. Microb Ecol 63:905–918

    Article  Google Scholar 

  • Dacks JB, Doolittle WF (2001) Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107:419–425

    Article  Google Scholar 

  • Dacks JB, Roger AJ (1999) The first sexual lineage and the relevance of facultative sex. J Mol Evol 48:779–783

    Article  Google Scholar 

  • de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8:395–403

    Article  Google Scholar 

  • de Mendoza A, Suga H, Ruiz-Trillo I (2010) Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol 10:93

    Article  Google Scholar 

  • Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19:591–599

    Article  Google Scholar 

  • Derelle R, Lang BF (2012) Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol 29:1277–1289

    Article  Google Scholar 

  • Derelle R, Lopez P, Guyader H, Manuel M (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev 9:212–219

    Article  Google Scholar 

  • Dickinson DJ, Nelson WJ, Weis WI (2011) A polarized epithelium organized by β- and α-catenin predates cadherin and metazoan origins. Science 331:1336–1339

    Article  Google Scholar 

  • Dickinson DJ, Nelson WJ, Weis WI (2012) An epithelial tissue in Dictyostelium challenges the traditional origin of metazoan multicellularity. BioEssays 34:833–840

    Article  Google Scholar 

  • Dunthorn M, Katz LA (2010) Secretive ciliates and putative asexuality in microbial eukaryotes. Trends Microbiol 18:183–188

    Article  Google Scholar 

  • Egel R, Penny D (2007) On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings. In: Egel R, Lankenau D-H (eds) Recombination and meiosis. Springer, Berlin, pp 249–287

    Google Scholar 

  • Eisenstein EM (1997) Selecting a model system for neurobiological studies of learning and memory. Behav Brain Res 82:121–132

    Article  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  Google Scholar 

  • Fairclough SR, Dayel MJ, King N (2010) Multicellular development in a choanoflagellate. Curr Biol 20:R875–R876

    Article  Google Scholar 

  • Field MC, Dacks JB (2009) First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 21:4–13

    Article  Google Scholar 

  • Fritz-Kaylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML et al (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642

    Article  Google Scholar 

  • Gorelick R, Carpinone J (2009) Origin and maintenance of sex: the evolutionary joys of self sex. Biol J Linn Soc Lond 98:707–728

    Article  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    Google Scholar 

  • Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:6999–7080

    Article  Google Scholar 

  • Gregory TR (2007) Genomes large and small. Genomicron. http://www.genomicron.evolverzone.com/2007/06/some-big-and-small-genomes (8 June)

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucl Acids Res 35(Suppl 1):D332–D338

    Article  Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654

    Article  Google Scholar 

  • Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmel SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Mol Biol Evol 24:1702–1713

    Article  Google Scholar 

  • Hadany L, Feldman MW (2005) Evolutionary traction: the cost of adaptation and the evolution of sex. J Evol Biol 18:309–314

    Article  Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci USA 87:3566–3573

    Article  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘supergroups’. Proc Natl Acad Sci USA 106:3859–3864

    Article  Google Scholar 

  • Harvey PH, Purvis A (1991) Comparative methods for explaining adaptation. Nature 351: 619–624

    Google Scholar 

  • Hausmann K, Hülsmann N, Radek R (2003) Protistology (original title Protozoology), 3rd edn. Schweizerbart, Berlin

    Google Scholar 

  • Herron MD, Michod RE (2007) Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution 62:436–451

    Article  Google Scholar 

  • Heywood P, Magee PT (1976) Meiosis in protists: some structural and physiological aspects of meiosis in algae, fungi, and protozoa. Bacteriol Rev 40:190–240

    Google Scholar 

  • Hurst LD, Peck JR (1996) Recent advances in understanding of the evolution and maintenance of sex. Trends Ecol Evol 11:46–52

    Article  Google Scholar 

  • Iida K, Takishita K, Ohshima K, Inagaki Y (2007) Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions. Mol Phylogenet Evol 45:227–238

    Article  Google Scholar 

  • James-Clark H (1866) Conclusive proofs of the animality of the ciliate sponges, and of their affinities with the Infusoria flagellata. Am J Sci Arts 42:320–324

    Google Scholar 

  • James-Clark H (1868) On the Spongiae ciliatae as Infusoria flagellata; or observations on the structure, animality, and relationship of Leucosolenia botryoides, Bowerbank. Ann Mag Nat Hist 1:133–142, 188–215, 250–264 (plus plates V, VI, VII)

    Google Scholar 

  • Janouškovec J, Horák A, Obornik M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    Article  Google Scholar 

  • Kaiser D (2001) Building a multicellular organism. Annu Rev Genet 35:103–123

    Article  Google Scholar 

  • Katz LA, Grant J, Parfrey LW, Gant A, O’Kelly CJ et al (2011) Subulatomonas tetraspora nov. gen. sp. is a member of a previously unrecognized major clade of eukaryotes. Protist 162:762–773

    Article  Google Scholar 

  • Katz LA, Grant JR, Parfrey LW, Burleigh JG (2012) Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol 61:653–660

    Article  Google Scholar 

  • Keeling PJ (1998) A kingdom’s progress: Archezoa and the origin of eukaryotes. BioEssays 20:87–95

    Article  Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8

    Article  Google Scholar 

  • Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116

    Article  Google Scholar 

  • Kim E, Simpson AGB, Graham LE (2006) Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol 23:2455–2466

    Article  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325

    Article  Google Scholar 

  • King N (2010) Nature and nurture in the evolution of cell biology. Mol Biol Cell 21:3801–3802

    Article  Google Scholar 

  • King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363

    Article  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  Google Scholar 

  • Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420–8427

    Article  Google Scholar 

  • Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239

    Article  Google Scholar 

  • Knoll AH, Hewitt D (2011) Phylogenetic, functional and geological perspectives on complex multicellularity. In: Calcott B, Sterelny K (eds) The major transitions in evolution revisited. MIT Press, Cambridge, pp 251–270

    Google Scholar 

  • Kondrashov AS (1993) Classification of hypotheses on the advantage of amphimixis. J Hered 84:372–387

    Google Scholar 

  • Koonin EV (2010a) The origin and early evolution of eukaryotes in light of phylogenomics. Genome Biol 11:209

    Article  Google Scholar 

  • Koonin EV (2010b) The incredible expanding ancestor of eukaryotes. Cell 140:606–608

    Article  Google Scholar 

  • Koonin EV (2010c) Reviewer comments to Nick Lane’s ‘Energetics and genetics across the prokaryote–eukaryote divide’. Biol Direct 6:35 (reviewers comments)

    Google Scholar 

  • Koschwanez JH, Foster KR, Murray AW (2011) Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol 9(8):e1001122. doi:10.1371/journal.pbio.1001122

    Article  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014

    Article  Google Scholar 

  • Lahr DJG, Parfrey LW, Mitchell EAD, Katz LA, Lara E (2011) The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms. Proc R Soc Lond B 278:2081–2090. doi:10.1098/rspb.2011.0289

    Article  Google Scholar 

  • Lane N (2011) Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 6:35

    Article  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934

    Article  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmal M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778

    Article  Google Scholar 

  • Lasek-Nesselquist E, Welch DM, Thompson RCA, Steuart RF, Sogin ML (2009) Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol 56:504–518

    Article  Google Scholar 

  • Leander BS (2008) A hierarchical view of convergent evolution in microbial eukaryotes. J Eukaryot Microbiol 55:59–68

    Article  Google Scholar 

  • Lehtonen J, Jennions MD, Kokko H (2012) The many costs of sex. Trends Ecol Evol 27:172–178

    Article  Google Scholar 

  • Lenski RE (1999) A distinction between the origin and maintenance of sex. J Evol Biol 12:1034–1035

    Article  Google Scholar 

  • Leroi AM, Rose MR, Lauder GV (1994) What does the comparative method reveal about adaptation? Am Nat 143:381–402

    Article  Google Scholar 

  • Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9:e272. doi:10.1186/1471-2148-9-272

    Article  Google Scholar 

  • López-García P, Moreira D (1999) Metabolic symbiosis at the origin of eukaryotes. Trends Biochem 24:88–93

    Article  Google Scholar 

  • López-García P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. BioEssays 28:525–533

    Article  Google Scholar 

  • Losos JB (2011) Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am Nat 177:709–727

    Article  Google Scholar 

  • Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104:8597–8604

    Article  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Google Scholar 

  • Malik S-B, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM Jr (2008) An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 3(8):e2879

    Article  Google Scholar 

  • Mann DG (1993) Patterns of sexual reproduction in diatoms. Hydrobiologia 269(270):11–20

    Article  Google Scholar 

  • Manning G, Young SL, Miller WT, Zhai Y (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signalling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci USA 105:9674–9679

    Article  Google Scholar 

  • Margulis L (1971) Whittaker’s five kingdoms of organisms: minor revisions suggested by considerations of the origin of mitosis. Evolution 25:242–245

    Article  Google Scholar 

  • Marshall CR, Valentine JW (2010) The importance of preadapted genomes in the origin of animal bodyplans and the Cambrian explosion. Evolution 64:1189–1201

    Google Scholar 

  • Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45

    Article  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  Google Scholar 

  • Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUMBM Life 55(4–5):193–204

    Article  Google Scholar 

  • Martins EP (2000) Adaptation and the comparative method. Trends Ecol Evol 15:296–299

    Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J (1986) Contemplating life without sex. Nature 324:300–301

    Article  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  Google Scholar 

  • Meirmans S, Strand R (2010) Why are there so many theories for sex, and what do we do with them? J Hered 101(Suppl 1):S3–S12

    Article  Google Scholar 

  • Michod RE (1993) Genetic error, sex, and diploidy. J Hered 84:360–371

    Google Scholar 

  • Michod RE (2005) On the transfer of fitness from the cell to the multicellular organism. Biol Philos 20:967–987

    Article  Google Scholar 

  • Montagnes D, Roberts E, Lukeš J, Lowe C (2012) The rise of model protozoa. Trends Microbiol 20:184–191

    Article  Google Scholar 

  • Moore RB, Oborník M, Janouškovec J, Chrudimský T, Vancová M, Green DH, Wright SW, Davies NW, Bolch CJS, Heimann K, Šlapeta J, Hoegh-Guldberg O, Logsdon JM Jr, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    Article  Google Scholar 

  • Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N (2012) Origin of metazoan cadhering diversity and the antiquity of the classical cadherin/β-catenin complex. Proc Natl Acad Sci USA 109:13046–13051

    Article  Google Scholar 

  • O’Malley MA (2010) The first eukaryote cell: an unfinished history of contestation. Stud Hist Philos Biol Biomed Sci 41:212–224

    Google Scholar 

  • Otto SP (2009) The evolutionary enigma of sex. Am Nat 174:S1–S14

    Article  Google Scholar 

  • Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC (2010) The evolution of extracellular matrix. Mol Biol Cell 21:4300–4305

    Article  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 4:331–348

    Article  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–11

    Article  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891

    Article  Google Scholar 

  • Patterson DJ (1999) The diversity of eukaryotes. Am Nat 65(154):S96–S124

    Article  Google Scholar 

  • Patterson DJ, Sogin ML (1992) Eukaryote origins and protistan diversity. In: Matsuno K, Hartman H (eds) The origin and evolution of prokaryotic and eukaryotic cells. World Scientific, River Edge, pp 13–46

    Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  Google Scholar 

  • Pfeiffer T, Bonhoeffer S (2003) An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci USA 100:1095–1098

    Article  Google Scholar 

  • Phadke SS, Zufall RA (2009) Rapid diversification of mating systems in ciliates. Biol J Linn Soc Lond 98:187–197

    Article  Google Scholar 

  • Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J, Moreira D, Müller M, Le Guyader H (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci 267:1213–1221

    Article  Google Scholar 

  • Pincus D, Letunic I, Bork P, Lim WA (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc Natl Acad Sci USA 105:9680–9684

    Article  Google Scholar 

  • Poxleitner MK, Carpenter ML, Mancuso JJ, Wang C-JR, Dawson SC, Cande WZ (2008) Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319:1530–1533

    Article  Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C et al (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Article  Google Scholar 

  • Raikov IB (1995) Meiosis in protists: recent advances and persisting problems. Eur J Protistol 31:1–7

    Article  Google Scholar 

  • Ramesh MA, Malik S-B, Logsdon JM Jr (2005) A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol 15:185–191

    Google Scholar 

  • Ratcliff WC, Denison RF, Borrello M, Travisano M (2012) Experimental evolution of multicellularity. Proc Natl Acad Sci USA 109:1595–1600

    Article  Google Scholar 

  • Reynolds A (2008) Amoebae as exemplary cells: The protean nature of an elementary organism. J Hist Biol 41:307–337

    Article  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118

    Article  Google Scholar 

  • Richmond ML (1989) Protozoa as precursors of metazoan: German cell theory and its critics at the turn of the century. J Hist Biol 22:243–276

    Article  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF (2007) Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol 17:1420–1425

    Article  Google Scholar 

  • Roger AJ (1999) Reconstructing early events in eukaryotic evolution. Am Nat 154:S146–S163

    Article  Google Scholar 

  • Rogozin IB, Basu MK, Csürös M, Koonin EV (2009) Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol 1:99–113. doi:10.1093/gbe/evp011

    Article  Google Scholar 

  • Rokas A (2008a) The molecular origins of multicellular transitions. Curr Opin Genet Dev 18:472–478

    Article  Google Scholar 

  • Rokas A (2008b) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    Article  Google Scholar 

  • Rothschild LJ (1989) Protozoa, protista, protoctista: what’s in a name? J Hist Biol 22:277–305

    Article  Google Scholar 

  • Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray MW (2007) The origins of multicellularity: a multi-taxon initiative. Trends Genet 23:113–118

    Article  Google Scholar 

  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of metazoa. Mol Biol Evol 25(4):664–672

    Article  Google Scholar 

  • Rundell RJ, Leander BS (2010) Masters of miniaturization: convergent evolution among interstitial eukaryotes. BioEssays 32:430–437

    Article  Google Scholar 

  • Sapp J (1987) Beyond the gene: cytoplasmic inheritance and the struggle for authority in genetics. Oxford University Press, Oxford

    Google Scholar 

  • Saville Kent W (1880–1881) Manual of the infusoria: including a description of all known flagellate, cilate, and tentaculiferous protozoa, British and foreign, and an account of the organization and affinities of sponges, vol 1. David Bogue, London

  • Scamardella JM (1999) Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista. Int Microbiol 2:207–216

    Google Scholar 

  • Schloegel JJ (1999) From anomaly to unification: Tracy Sonneborn and the species problem in protozoa, 1954–1957. J Hist Biol 32:93–132

    Article  Google Scholar 

  • Schurko AM, Neiman M, Logsdon JM Jr (2009) Signs of sex: what we know and how we know it. Trends Ecol Evol 24:208–217

    Article  Google Scholar 

  • Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci USA 107:10142–10147

    Article  Google Scholar 

  • Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I, Pan D (2012) Premetazoan origin of the Hippo signaling pathway. Cell Rep 1:13–20

    Article  Google Scholar 

  • Shadwick LL, Spiegel FW, Shadwi JDL, Brown MW, Silberman JD (2009) Eumycetozoa = Amoebozoa? SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PLoS One 4(8):e6754. doi:10.1371/journal.pone.0006754

    Article  Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of choanozoa and the origin of animals. PLoS One 3:e2098. doi:10.1371/journal.pone.0002098

    Article  Google Scholar 

  • Shenk MA, Steele RE (1993) A molecular snapshot of the metazoan ‘Eve’. Trends Biochem Sci 18:459–463

    Article  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308

    Article  Google Scholar 

  • Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777

    Article  Google Scholar 

  • Simpson AGB, Roger AJ (2004) The real ‘kingdoms’ of eukaryotes. Curr Biol 14:R693–R696

    Article  Google Scholar 

  • Smith TG, Walliker D, Ranford-Cartwright LC (2002) Sexual differentiation and sex determination in the Apicomplexa. Trends Parasitol 18:315–323

    Article  Google Scholar 

  • Spiegel FW (2011) Commentary on the chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms. Proc R Soc Lond B 278:2096–2097

    Article  Google Scholar 

  • Stanley SM (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc Natl Acad Sci 70:1486–1489

    Google Scholar 

  • Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297:89–91

    Article  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2003) The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666

    Article  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    Article  Google Scholar 

  • Sterelny K (2006) What is evolvability? In: Matthen M, Stephens C (eds) Philosophy of biology. Elsevier, Amsterdam, pp 177–192

  • Stoecker DK (1998) Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur J Protistol 34:281–290

    Article  Google Scholar 

  • Stoltzfus A (2012) Constructive neutral evolution: exploring evolutionary theory’s curious disconnect. Biol Direct 7:35. doi:10.1186/1745-6150-7-35

    Article  Google Scholar 

  • Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I (2012) Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 5(222):ra35

    Article  Google Scholar 

  • Sunderland ME (2011) Morphogenesis, Dictyostelium, and the search for shared developmental processes. Stud Hist Philos Biol Biomed Sci 42:508–517

    Google Scholar 

  • Taylor FJRM (2003) The collapse of the two-kingdom system, the rise of protistology and the founding of the International Society for Evolutionary Protistology (ISEP). Int J Syst Evol Microbiol 53:1707–1714

    Article  Google Scholar 

  • Tinbergen N (1963) On aims and methods of Ethology. Z Tierpsychol 20:410–433

    Article  Google Scholar 

  • van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231

    Article  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the metazoan: an evolutionary link with fungi. Science 260:340–342

    Article  Google Scholar 

  • West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12:1003–1012

    Article  Google Scholar 

  • Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163:150–160

    Google Scholar 

  • Wilkins AS, Holliday R (2009) The evolution of meiosis from mitosis. Genetics 181:3–12

    Article  Google Scholar 

  • Williams GC (1975) Sex and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Wolf M, Hausmann K (2001) Protozoology from the perspective of science theory: history and concept of a biological discipline. Linzer Biol Beitr 33:461–488

    Google Scholar 

  • Yabuki A, Inagaki Y, Ishida K (2010) Palpitomonas bilix gen. et sp. nov.: a novel deep-branching heterotroph possibly related to Archaeplastida or Hacrobia. Protist 161:523–538

    Article  Google Scholar 

  • Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729

    Article  Google Scholar 

  • Zhang Q, Simpson A, Song W (2012) Insights into the phylogeny of systematically controversial haptorian ciliates (Ciliophora, Litostomatea) based on multigene analyses. Proc R Soc Lond B 279:2625–2635

    Article  Google Scholar 

  • Zubáčová Z, Cimbůrek Z, Tachezy J (2008) Comparative analysis of trichomonad genome sizes ansd karyotypes. Mol Biochem Parasitol 161:49–54

    Article  Google Scholar 

  • Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mark Olson (UNAM) for detailed comments that greatly clarified our argument. MAO acknowledges funding from the Australian Research Council and University of Sydney in the form of a Future Fellowship; AGBS is supported by the Canadian Institute for Advanced Research program in Integrated Microbial Biodiversity, and a Discovery grant from the Natural Sciences and Engineering Research Council of Canada; AJR is supported by the Canada Research Chairs Program and a Discovery grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen A. O’Malley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Malley, M.A., Simpson, A.G.B. & Roger, A.J. The other eukaryotes in light of evolutionary protistology. Biol Philos 28, 299–330 (2013). https://doi.org/10.1007/s10539-012-9354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10539-012-9354-y

Keywords