numpy.asarray#
- numpy.asarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)#
Convert the input to an array.
- Parameters:
- aarray_like
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
- dtypedata-type, optional
By default, the data-type is inferred from the input data.
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘K’.
- devicestr, optional
The device on which to place the created array. Default:
None. For Array-API interoperability only, so must be"cpu"if passed.New in version 2.0.0.
- copybool, optional
If
True, then the object is copied. IfNonethen the object is copied only if needed, i.e. if__array__returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (dtype,order, etc.). ForFalseit raises aValueErrorif a copy cannot be avoided. Default:None.New in version 2.0.0.
- likearray_like, optional
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- outndarray
Array interpretation of
a. No copy is performed if the input is already an ndarray with matching dtype and order. Ifais a subclass of ndarray, a base class ndarray is returned.
See also
asanyarraySimilar function which passes through subclasses.
ascontiguousarrayConvert input to a contiguous array.
asfortranarrayConvert input to an ndarray with column-major memory order.
asarray_chkfiniteSimilar function which checks input for NaNs and Infs.
fromiterCreate an array from an iterator.
fromfunctionConstruct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> import numpy as np >>> np.asarray(a) array([1, 2])
Existing arrays are not copied:
>>> a = np.array([1, 2]) >>> np.asarray(a) is a True
If
dtypeis set, array is copied only if dtype does not match:>>> a = np.array([1, 2], dtype=np.float32) >>> np.shares_memory(np.asarray(a, dtype=np.float32), a) True >>> np.shares_memory(np.asarray(a, dtype=np.float64), a) False
Contrary to
asanyarray, ndarray subclasses are not passed through:>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True