Working with JSON in PostgreSQL, MySQL & SQL Server
"Your data isn't always flat — your queries shouldn't be either."
SQL databases have evolved to support semi-structured data, especially JSON, alongside traditional relational models. This hybrid approach lets you:
- Store rich nested data
- Adapt to evolving schemas
- Join structured and flexible data together
In this article, we’ll cover:
- JSON column types
- Querying nested structures
- Indexing for performance
- Cross-database examples in PostgreSQL, MySQL, and SQL Server
Define JSON Columns
PostgreSQL:
CREATE TABLE users (
id SERIAL PRIMARY KEY,
profile JSONB
);
MySQL:
CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
profile JSON
);
SQL Server:
CREATE TABLE users (
id INT IDENTITY PRIMARY KEY,
profile NVARCHAR(MAX) -- must be valid JSON
);
Extracting JSON Values
PostgreSQL:
-- Extract scalar field
SELECT profile->>'name' AS name FROM users;
-- Extract nested object
SELECT profile->'address'->>'city' AS city FROM users;
MySQL:
-- Extract with JSON_EXTRACT
SELECT JSON_UNQUOTE(JSON_EXTRACT(profile, '$.name')) AS name FROM users;
-- Nested access
SELECT JSON_UNQUOTE(JSON_EXTRACT(profile, '$.address.city')) AS city FROM users;
SQL Server:
-- Extract scalar field
SELECT JSON_VALUE(profile, '$.name') AS name FROM users;
-- Extract nested object
SELECT JSON_VALUE(profile, '$.address.city') AS city FROM users;
Store and Retrieve Entire JSON Objects
Insert full object:
INSERT INTO users (profile)
VALUES ('{"name": "Ada", "skills": ["SQL", "Python"]}');
Query full object:
SELECT profile FROM users;
Use JSON in WHERE Clauses
-- Get users with SQL skill
-- PostgreSQL
SELECT * FROM users WHERE profile->'skills' ? 'SQL';
-- MySQL
SELECT * FROM users WHERE JSON_CONTAINS(profile->'$.skills', '"SQL"');
-- SQL Server
SELECT * FROM users WHERE JSON_QUERY(profile, '$.skills') LIKE '%SQL%';
Indexing JSON Data
PostgreSQL (JSONB only):
-- Index top-level key
CREATE INDEX idx_profile_name ON users ((profile->>'name'));
-- Full GIN index
CREATE INDEX idx_profile_json ON users USING GIN (profile);
MySQL:
-- Generated column (MySQL 5.7+)
ALTER TABLE users ADD name_gen VARCHAR(255) GENERATED ALWAYS AS (JSON_UNQUOTE(JSON_EXTRACT(profile, '$.name'))) STORED;
CREATE INDEX idx_name_gen ON users(name_gen);
SQL Server:
-- Create computed column
ALTER TABLE users ADD name AS JSON_VALUE(profile, '$.name');
CREATE INDEX idx_name ON users(name);
✅ Indexed access boosts performance in WHERE and JOIN clauses.
Output JSON from SQL
PostgreSQL:
SELECT jsonb_build_object('id', id, 'profile', profile) FROM users;
SQL Server:
SELECT id, profile FROM users FOR JSON PATH;
MySQL:
SELECT JSON_OBJECT('id', id, 'profile', profile) FROM users;
Use Cases for JSON in SQL
- Dynamic user profiles
- Event logs
- IoT sensor payloads
- Configuration blobs
- Integration with APIs
Final Thoughts: JSON Isn’t Just for NoSQL
With modern JSON support, SQL databases let you:
- Stay flexible
- Model nested or sparse data
- Use SQL’s power on semi-structured information
“The best of both worlds: query JSON with the reliability of SQL.”
#SQL #JSON #PostgreSQL #MySQL #SQLServer #SemiStructured #AdvancedSQL #DataEngineering
Top comments (0)