🚀 Why RAG? Because LLMs Need a Reality Check
You’ve seen it—ChatGPT confidently spouts nonsense about your data. Hallucinations. Outdated answers. Zero domain knowledge.
Enter RAG (Retrieval-Augmented Generation):
✅ Grounds responses in your data (PDFs, APIs, databases)
✅ Cuts hallucinations by 60%+ (IBM research)
✅ Works with real-time updates
This guide? No fluff. Just code + battle-tested steps to build your first RAG pipeline. Let’s go!
🔧 Tools You’ll Need
- Framework: LangChain (quickstart) or LlamaIndex (optimized retrieval)
- LLM: GPT-4-turbo (paid) or Llama 3 (open-source)
- Vector DB: Pinecone (cloud), Weaviate (self-hosted), or FAISS (local)
-
Embeddings: OpenAI’s
text-embedding-3-small
(best bang/buck)
pip install langchain openai faiss-cpu # Minimal setup
📦 Step 1: Indexing (Preparing Your Data)
Goal: Turn docs into searchable vectors.
A. Load Documents
from langchain.document_loaders import DirectoryLoader
loader = DirectoryLoader("./docs", glob="*.pdf") # Also supports .txt, .md
documents = loader.load()
B. Chunk for Context
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = splitter.split_documents(documents) # 👈 Smaller chunks = better precision
C. Embed & Store
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_db = FAISS.from_documents(chunks, embeddings) # Save to disk or cloud
Pro Tip: Add metadata (e.g., {doc_name: "HR_Policy_2024.pdf"}
) for filtering later.
🔍 Step 2: Retrieval (Finding Relevant Data)
Goal: Fetch the best docs for a query.
query = "What’s our PTO policy?"
docs = vector_db.similarity_search(query, k=3) # Top 3 matching chunks
Optimize Retrieval:
-
Hybrid Search: Combine keywords + semantic meaning (use
WeaviateHybridSearchRetriever
). - Reranking: Boost accuracy with Cohere’s reranker (costs ~100ms latency).
💬 Step 3: Generation (Smart Answers)
Goal: Feed context to an LLM for grounded responses.
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage
llm = ChatOpenAI(model="gpt-4-turbo")
response = llm([
SystemMessage(content="Answer using ONLY the context below:"),
HumanMessage(content=f"Context: {docs}\n\nQuestion: {query}")
])
print(response.content) # 🎉 Accurate, sourced answer!
Example Output:
“Employees accrue 15 PTO days/year. See *HR_Policy_2024.pdf, Section 3.2.”*
🚀 Advanced Tips
- Cache Frequent Queries → Redis for 10x speed.
- Add Guardrails → Validate outputs with regex or smaller LLMs.
- Go Multi-Modal → Use LlamaParse for PDF tables/images.
💡 Killer RAG Use Cases
- Internal Wiki Chatbot (“How do I request AWS credits?”)
- Customer Support (“Does my plan cover API access?”)
- Codebase QA (“Explain our auth middleware”)
🔥 What’s Next?
- Tiny RAG: Run Phi-3 + Ollama locally.
- Agents: Let RAG decide when to search (LangGraph).
👉 Try It Today:
git clone https://github.com/langchain-ai/rag-from-scratch
Hit a snag? Ask below! I’ll help debug. 🛠️
Top comments (0)