DEV Community

Alex Aslam
Alex Aslam

Posted on

Building Your First RAG Pipeline: A Step-by-Step Guide for Developers

🚀 Why RAG? Because LLMs Need a Reality Check

You’ve seen it—ChatGPT confidently spouts nonsense about your data. Hallucinations. Outdated answers. Zero domain knowledge.

Enter RAG (Retrieval-Augmented Generation):

Grounds responses in your data (PDFs, APIs, databases)

Cuts hallucinations by 60%+ (IBM research)

Works with real-time updates

This guide? No fluff. Just code + battle-tested steps to build your first RAG pipeline. Let’s go!


🔧 Tools You’ll Need

  • Framework: LangChain (quickstart) or LlamaIndex (optimized retrieval)
  • LLM: GPT-4-turbo (paid) or Llama 3 (open-source)
  • Vector DB: Pinecone (cloud), Weaviate (self-hosted), or FAISS (local)
  • Embeddings: OpenAI’s text-embedding-3-small (best bang/buck)
pip install langchain openai faiss-cpu  # Minimal setup
Enter fullscreen mode Exit fullscreen mode

📦 Step 1: Indexing (Preparing Your Data)

Goal: Turn docs into searchable vectors.

A. Load Documents

from langchain.document_loaders import DirectoryLoader

loader = DirectoryLoader("./docs", glob="*.pdf")  # Also supports .txt, .md
documents = loader.load()
Enter fullscreen mode Exit fullscreen mode

B. Chunk for Context

from langchain.text_splitter import RecursiveCharacterTextSplitter

splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = splitter.split_documents(documents)  # 👈 Smaller chunks = better precision
Enter fullscreen mode Exit fullscreen mode

C. Embed & Store

from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS

embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_db = FAISS.from_documents(chunks, embeddings)  # Save to disk or cloud
Enter fullscreen mode Exit fullscreen mode

Pro Tip: Add metadata (e.g., {doc_name: "HR_Policy_2024.pdf"}) for filtering later.


🔍 Step 2: Retrieval (Finding Relevant Data)

Goal: Fetch the best docs for a query.

query = "What’s our PTO policy?"
docs = vector_db.similarity_search(query, k=3)  # Top 3 matching chunks
Enter fullscreen mode Exit fullscreen mode

Optimize Retrieval:

  • Hybrid Search: Combine keywords + semantic meaning (use WeaviateHybridSearchRetriever).
  • Reranking: Boost accuracy with Cohere’s reranker (costs ~100ms latency).

💬 Step 3: Generation (Smart Answers)

Goal: Feed context to an LLM for grounded responses.

from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage

llm = ChatOpenAI(model="gpt-4-turbo")

response = llm([
    SystemMessage(content="Answer using ONLY the context below:"),
    HumanMessage(content=f"Context: {docs}\n\nQuestion: {query}")
])

print(response.content)  # 🎉 Accurate, sourced answer!
Enter fullscreen mode Exit fullscreen mode

Example Output:

“Employees accrue 15 PTO days/year. See *HR_Policy_2024.pdf, Section 3.2.”*


🚀 Advanced Tips

  1. Cache Frequent Queries → Redis for 10x speed.
  2. Add Guardrails → Validate outputs with regex or smaller LLMs.
  3. Go Multi-Modal → Use LlamaParse for PDF tables/images.

💡 Killer RAG Use Cases

  • Internal Wiki Chatbot (“How do I request AWS credits?”)
  • Customer Support (“Does my plan cover API access?”)
  • Codebase QA (“Explain our auth middleware”)

🔥 What’s Next?

  • Tiny RAG: Run Phi-3 + Ollama locally.
  • Agents: Let RAG decide when to search (LangGraph).

👉 Try It Today:

git clone https://github.com/langchain-ai/rag-from-scratch
Enter fullscreen mode Exit fullscreen mode

Hit a snag? Ask below! I’ll help debug. 🛠️

Top comments (0)