This is a follow-up question for A recursive_find_if Template Function with Unwrap Level Implementation in C++ and recursive_invocable and recursive_project_invocable Concept Implementation in C++. I am trying to implement recursive_find and recursive_find_if_not template functions in this post.
The experimental implementation
- recursive_findTemplate Function- template<std::size_t unwrap_level, class R, class T, class Proj = std::identity> requires(recursive_invocable<unwrap_level, Proj, R>) constexpr auto recursive_find(R&& range, T&& target, Proj&& proj = {}) { if constexpr (unwrap_level) { return std::ranges::find_if(range, [&](auto& element) { return recursive_find<unwrap_level - 1>(element, target, proj); }) != std::ranges::end(range); } else { return range == std::invoke(proj, target); } }
- recursive_findTemplate Function with Execution Policy- template<std::size_t unwrap_level, class ExecutionPolicy, class R, class T, class Proj = std::identity> requires(recursive_invocable<unwrap_level, Proj, R>&& std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>) constexpr auto recursive_find(ExecutionPolicy execution_policy, R&& range, T&& target, Proj&& proj = {}) { if constexpr (unwrap_level) { return std::find_if(execution_policy, std::ranges::begin(range), std::ranges::end(range), [&](auto& element) { return recursive_find<unwrap_level - 1>(execution_policy, element, target, proj); }) != std::ranges::end(range); } else { return range == std::invoke(proj, target); } }
- recursive_find_if_notTemplate Function- /* recursive_find_if_not template function implementation with unwrap level */ template<std::size_t unwrap_level, class T, class Proj = std::identity, recursive_projected_invocable<unwrap_level, Proj, T> UnaryPredicate> constexpr auto recursive_find_if_not(T&& value, UnaryPredicate&& p, Proj&& proj = {}) { if constexpr (unwrap_level > 0) { return std::ranges::find_if(value, [&](auto& element) { return recursive_find_if_not<unwrap_level - 1>(element, p, proj); }) != std::ranges::end(value); } else { return !std::invoke(p, std::invoke(proj, value)); } }
Full Testing Code
The full testing code:
//  recursive_find and recursive_find_if_not Template Functions Implementation in C++
#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <concepts>
#include <deque>
#include <execution>
#include <exception>
//#include <experimental/ranges/algorithm>
#include <experimental/array>
#include <functional>
#include <iostream>
#include <iterator>
#include <ranges>
#include <string>
#include <utility>
#include <vector>
//  is_reservable concept
template<class T>
concept is_reservable = requires(T input)
{
    input.reserve(1);
};
//  is_sized concept, https://codereview.stackexchange.com/a/283581/231235
template<class T>
concept is_sized = requires(T x)
{
    std::size(x);
};
template<typename T>
concept is_summable = requires(T x) { x + x; };
//  recursive_unwrap_type_t struct implementation
template<std::size_t, typename, typename...>
struct recursive_unwrap_type { };
template<class...Ts1, template<class...>class Container1, typename... Ts>
struct recursive_unwrap_type<1, Container1<Ts1...>, Ts...>
{
    using type = std::ranges::range_value_t<Container1<Ts1...>>;
};
template<std::size_t unwrap_level, class...Ts1, template<class...>class Container1, typename... Ts>
requires (  std::ranges::input_range<Container1<Ts1...>> &&
            requires { typename recursive_unwrap_type<
                                    unwrap_level - 1,
                                    std::ranges::range_value_t<Container1<Ts1...>>,
                                    std::ranges::range_value_t<Ts>...>::type; })                //  The rest arguments are ranges
struct recursive_unwrap_type<unwrap_level, Container1<Ts1...>, Ts...>
{
    using type = typename recursive_unwrap_type<
        unwrap_level - 1,
        std::ranges::range_value_t<Container1<Ts1...>>
        >::type;
};
template<std::size_t unwrap_level, typename T1, typename... Ts>
using recursive_unwrap_type_t = typename recursive_unwrap_type<unwrap_level, T1, Ts...>::type;
//  recursive_variadic_invoke_result_t implementation
template<std::size_t, typename, typename, typename...>
struct recursive_variadic_invoke_result { };
template<typename F, class...Ts1, template<class...>class Container1, typename... Ts>
struct recursive_variadic_invoke_result<1, F, Container1<Ts1...>, Ts...>
{
    using type = Container1<std::invoke_result_t<F,
        std::ranges::range_value_t<Container1<Ts1...>>,
        std::ranges::range_value_t<Ts>...>>;
};
template<std::size_t unwrap_level, typename F, class...Ts1, template<class...>class Container1, typename... Ts>
requires (  std::ranges::input_range<Container1<Ts1...>> &&
            requires { typename recursive_variadic_invoke_result<
                                    unwrap_level - 1,
                                    F,
                                    std::ranges::range_value_t<Container1<Ts1...>>,
                                    std::ranges::range_value_t<Ts>...>::type; })                //  The rest arguments are ranges
struct recursive_variadic_invoke_result<unwrap_level, F, Container1<Ts1...>, Ts...>
{
    using type = Container1<
        typename recursive_variadic_invoke_result<
        unwrap_level - 1,
        F,
        std::ranges::range_value_t<Container1<Ts1...>>,
        std::ranges::range_value_t<Ts>...
        >::type>;
};
template<std::size_t unwrap_level, typename F, typename T1, typename... Ts>
using recursive_variadic_invoke_result_t = typename recursive_variadic_invoke_result<unwrap_level, F, T1, Ts...>::type;
//  recursive_array_invoke_result implementation
template<std::size_t, typename, typename, typename...>
struct recursive_array_invoke_result { };
template<   typename F, 
            template<class, std::size_t> class Container,
            typename T,
            std::size_t N>
struct recursive_array_invoke_result<1, F, Container<T, N>>
{
    using type = Container<
        std::invoke_result_t<F, std::ranges::range_value_t<Container<T, N>>>,
        N>;
};
template<   std::size_t unwrap_level,
            typename F, 
            template<class, std::size_t> class Container,
            typename T,
            std::size_t N>
requires (  std::ranges::input_range<Container<T, N>> &&
            requires { typename recursive_array_invoke_result<
                                    unwrap_level - 1,
                                    F,
                                    std::ranges::range_value_t<Container<T, N>>>::type; })                //  The rest arguments are ranges
struct recursive_array_invoke_result<unwrap_level, F, Container<T, N>>
{
    using type = Container<
        typename recursive_array_invoke_result<
        unwrap_level - 1,
        F,
        std::ranges::range_value_t<Container<T, N>>
        >::type, N>;
};
template<   std::size_t unwrap_level,
            typename F,
            template<class, std::size_t> class Container,
            typename T,
            std::size_t N>
using recursive_array_invoke_result_t = typename recursive_array_invoke_result<unwrap_level, F, Container<T, N>>::type;
//  recursive_array_unwrap_type struct implementation, https://stackoverflow.com/a/76347485/6667035
template<std::size_t, typename>
struct recursive_array_unwrap_type { };
template<template<class, std::size_t> class Container,
              typename T,
              std::size_t N>
struct recursive_array_unwrap_type<1, Container<T, N>>
{
    using type = std::ranges::range_value_t<Container<T, N>>;
};
template<std::size_t unwrap_level, template<class, std::size_t> class Container,
              typename T,
              std::size_t N>
requires (  std::ranges::input_range<Container<T, N>> &&
            requires { typename recursive_array_unwrap_type<
                                    unwrap_level - 1,
                                    std::ranges::range_value_t<Container<T, N>>>::type; })                //  The rest arguments are ranges
struct recursive_array_unwrap_type<unwrap_level, Container<T, N>>
{
    using type = typename recursive_array_unwrap_type<
        unwrap_level - 1,
        std::ranges::range_value_t<Container<T, N>>
        >::type;
};
template<std::size_t unwrap_level, class Container>
using recursive_array_unwrap_type_t = typename recursive_array_unwrap_type<unwrap_level, Container>::type;
//  https://codereview.stackexchange.com/a/253039/231235
template<std::size_t dim, class T, template<class...> class Container = std::vector>
constexpr auto n_dim_container_generator(T input, std::size_t times)
{
    if constexpr (dim == 0)
    {
        return input;
    }
    else
    {
        return Container(times, n_dim_container_generator<dim - 1, T, Container>(input, times));
    }
}
template<std::size_t dim, std::size_t times, class T>
constexpr auto n_dim_array_generator(T input)
{
    if constexpr (dim == 0)
    {
        return input;
    }
    else
    {
        std::array<decltype(n_dim_array_generator<dim - 1, times>(input)), times> output;
        for (size_t i = 0; i < times; i++)
        {
            output[i] = n_dim_array_generator<dim - 1, times>(input);
        }
        return output;
    }
}
//  recursive_depth function implementation
template<typename T>
constexpr std::size_t recursive_depth()
{
    return std::size_t{0};
}
template<std::ranges::input_range Range>
constexpr std::size_t recursive_depth()
{
    return recursive_depth<std::ranges::range_value_t<Range>>() + std::size_t{1};
}
//  recursive_depth function implementation with target type
template<typename T_Base, typename T>
constexpr std::size_t recursive_depth()
{
    return std::size_t{0};
}
template<typename T_Base, std::ranges::input_range Range>
requires (!std::same_as<Range, T_Base>)
constexpr std::size_t recursive_depth()
{
    return recursive_depth<T_Base, std::ranges::range_value_t<Range>>() + std::size_t{1};
}
//  is_recursive_invocable template function implementation
template<std::size_t unwrap_level, class F, class... T>
requires(unwrap_level <= recursive_depth<T...>())
static constexpr bool is_recursive_invocable()
{
    if constexpr (unwrap_level == 0) {
        return std::invocable<F, T...>;
    } else {
        return is_recursive_invocable<
                    unwrap_level - 1,
                    F,
                    std::ranges::range_value_t<T>...>();
    }
}
//  recursive_invocable concept
template<std::size_t unwrap_level, class F, class... T>
concept recursive_invocable =
        is_recursive_invocable<unwrap_level, F, T...>();
//  is_recursive_project_invocable template function implementation
template<std::size_t unwrap_level, class Proj, class F, class... T>
requires(unwrap_level <= recursive_depth<T...>() &&
         recursive_invocable<unwrap_level, Proj, T...>)
static constexpr bool is_recursive_project_invocable()
{
    if constexpr (unwrap_level == 0) {
        return std::invocable<F, std::invoke_result_t<Proj, T...>>;
    } else {
        return is_recursive_project_invocable<
                    unwrap_level - 1,
                    Proj,
                    F,
                    std::ranges::range_value_t<T>...>();
    }
}
//  recursive_project_invocable concept
template<class F, std::size_t unwrap_level, class Proj, class... T>
concept recursive_projected_invocable =
        is_recursive_project_invocable<unwrap_level, Proj, F, T...>();
/*  recursive_all_of template function implementation with unwrap level
*/
template<std::size_t unwrap_level, class T, class Proj = std::identity, 
         recursive_projected_invocable<unwrap_level, Proj, T> UnaryPredicate>
constexpr auto recursive_all_of(T&& value, UnaryPredicate&& p, Proj&& proj = {}) {
    if constexpr (unwrap_level > 0)
    {
        return std::ranges::all_of(value, [&](auto&& element) {
            return recursive_all_of<unwrap_level - 1>(element, p, proj);
        });
    }
    else
    {
        return std::invoke(p, std::invoke(proj, value));
    }
}
/*  recursive_find template function implementation with unwrap level
*/
template<std::size_t unwrap_level, class R, class T, class Proj = std::identity>
requires(recursive_invocable<unwrap_level, Proj, R>)
constexpr auto recursive_find(R&& range, T&& target, Proj&& proj = {})
{
    if constexpr (unwrap_level)
    {
        return std::ranges::find_if(range, [&](auto& element) {
            return recursive_find<unwrap_level - 1>(element, target, proj);
        }) != std::ranges::end(range);
    }
    else
    {
        return range == std::invoke(proj, target);
    }
}
template<std::size_t unwrap_level, class ExecutionPolicy, class R, class T, class Proj = std::identity>
requires(recursive_invocable<unwrap_level, Proj, R>&&
         std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>)
constexpr auto recursive_find(ExecutionPolicy execution_policy, R&& range, T&& target, Proj&& proj = {})
{
    if constexpr (unwrap_level)
    {
        return std::find_if(execution_policy,
                    std::ranges::begin(range),
                    std::ranges::end(range),
                    [&](auto& element) {
            return recursive_find<unwrap_level - 1>(execution_policy, element, target, proj);
        }) != std::ranges::end(range);
    }
    else
    {
        return range == std::invoke(proj, target);
    }
}
/*  recursive_find_if template function implementation with unwrap level
*/
template<std::size_t unwrap_level, class T, class Proj = std::identity, 
         recursive_projected_invocable<unwrap_level, Proj, T> UnaryPredicate>
constexpr auto recursive_find_if(T&& value, UnaryPredicate&& p, Proj&& proj = {}) {
    if constexpr (unwrap_level > 0)
    {
        return std::ranges::find_if(value, [&](auto& element) {
            return recursive_find_if<unwrap_level - 1>(element, p, proj);
        }) != std::ranges::end(value);
    }
    else
    {
        return std::invoke(p, std::invoke(proj, value));
    }
}
/*  recursive_find_if_not template function implementation with unwrap level
*/
template<std::size_t unwrap_level, class T, class Proj = std::identity, 
         recursive_projected_invocable<unwrap_level, Proj, T> UnaryPredicate>
constexpr auto recursive_find_if_not(T&& value, UnaryPredicate&& p, Proj&& proj = {}) {
    if constexpr (unwrap_level > 0)
    {
        return std::ranges::find_if(value, [&](auto& element) {
            return recursive_find_if_not<unwrap_level - 1>(element, p, proj);
        }) != std::ranges::end(value);
    }
    else
    {
        return !std::invoke(p, std::invoke(proj, value));
    }
}
//  recursive_any_of template function implementation with unwrap level
template<std::size_t unwrap_level, class T, class Proj = std::identity, 
         recursive_projected_invocable<unwrap_level, Proj, T> UnaryPredicate>
constexpr auto recursive_any_of(T&& value, UnaryPredicate&& p, Proj&& proj = {})
{
    return recursive_find_if<unwrap_level>(value, p, proj);
}
//  recursive_none_of template function implementation with unwrap level
template<std::size_t unwrap_level, class T, class Proj = std::identity, 
         recursive_projected_invocable<unwrap_level, Proj, T> UnaryPredicate>
constexpr auto recursive_none_of(T&& value, UnaryPredicate&& p, Proj&& proj = {})
{
    return !recursive_any_of<unwrap_level>(value, p, proj);
}
template<std::ranges::input_range T>
constexpr auto recursive_print(const T& input, const int level = 0)
{
    T output = input;
    std::cout << std::string(level, ' ') << "Level " << level << ":" << std::endl;
    std::transform(input.cbegin(), input.cend(), output.begin(), 
        [level](auto&& x)
        {
            std::cout << std::string(level, ' ') << x << std::endl;
            return x;
        }
    );
    return output;
}
template<std::ranges::input_range T>
requires (std::ranges::input_range<std::ranges::range_value_t<T>>)
constexpr T recursive_print(const T& input, const int level = 0)
{
    T output = input;
    std::cout << std::string(level, ' ') << "Level " << level << ":" << std::endl;
    std::ranges::transform(std::ranges::cbegin(input), std::ranges::cend(input), std::ranges::begin(output),
        [level](auto&& element)
        {
            return recursive_print(element, level + 1);
        }
    );
    return output;
}
void recursive_find_tests()
{
    auto test_vectors_1 = n_dim_container_generator<4, int, std::vector>(1, 3);
    test_vectors_1[0][0][0][0] = 2;
    assert(recursive_find<4>(test_vectors_1, 2));
    assert(recursive_find<4>(std::execution::par, test_vectors_1, 2));
    auto test_vectors_2 = n_dim_container_generator<4, int, std::vector>(3, 3);
    assert(recursive_find<4>(test_vectors_2, 2) == false);
    assert(recursive_find<4>(test_vectors_2, 3));
    assert(recursive_find<4>(test_vectors_2, 4) == false);
    
    //  Tests with std::string
    auto test_vector_string = n_dim_container_generator<4, std::string, std::vector>("1", 3);
    assert(recursive_find<4>(test_vector_string, "1"));
    assert(recursive_find<4>(test_vector_string, "2") == false);
    //  Tests with std::string, projection
    assert(recursive_find<4>(
        test_vector_string,
        "1",
        [](auto&& element) {return std::to_string(std::stoi(element) + 1); }) == false);
    
    //  Tests with std::array of std::string
    std::array<std::string, 3> word_array1 = {"foo", "foo", "foo"};
    assert(recursive_find<1>(word_array1, "foo"));
    assert(recursive_find<1>(word_array1, "bar") == false);
    //  Tests with std::deque of std::string
    std::deque<std::string> word_deque1 = {"foo", "foo", "foo", "bar"};
    assert(recursive_find<1>(word_deque1, "foo"));
    assert(recursive_find<1>(word_deque1, "bar"));
    assert(recursive_find<1>(word_deque1, "abcd") == false);
    assert(recursive_find<2>(word_deque1, 'a'));
    assert(recursive_find<2>(word_deque1, 'b'));
    assert(recursive_find<2>(word_deque1, 'c') == false);
    std::vector<std::wstring> wstring_vector1{};
    for(int i = 0; i < 4; ++i)
    {
        wstring_vector1.push_back(std::to_wstring(1));
    }
    assert(recursive_find<1>(wstring_vector1, std::to_wstring(1)));
    assert(recursive_find<1>(wstring_vector1, std::to_wstring(2)) == false);
    std::vector<std::u8string> u8string_vector1{};
    for(int i = 0; i < 4; ++i)
    {
        u8string_vector1.push_back(u8"\u20AC2.00");
    }
    assert(recursive_find<1>(u8string_vector1, u8"\u20AC2.00"));
    assert(recursive_find<1>(u8string_vector1, u8"\u20AC1.00") == false);
    
    std::pmr::string pmr_string1 = "123";
    std::vector<std::pmr::string> pmr_string_vector1 = {pmr_string1, pmr_string1, pmr_string1};
    assert(recursive_find<1>(pmr_string_vector1, "123"));
    assert(recursive_find<1>(pmr_string_vector1, "456") == false);
    
    std::cout << "All tests passed!\n";
    return;
}
void recursive_find_if_not_tests()
{
    auto test_vectors_1 = n_dim_container_generator<4, int, std::vector>(1, 3);
    test_vectors_1[0][0][0][0] = 2;
    assert(recursive_find_if_not<4>(test_vectors_1, [](auto&& i) { return i == 1; }));
    auto test_vectors_2 = n_dim_container_generator<4, int, std::vector>(3, 3);
    assert(recursive_find_if_not<4>(test_vectors_2, [](auto&& i) { return i == 3; }) == false);
    //  Tests with std::string
    auto test_vector_string = n_dim_container_generator<4, std::string, std::vector>("1", 3);
    assert(recursive_find_if_not<4>(test_vector_string, [](auto&& i) { return i == "1"; }) == false);
    assert(recursive_find_if_not<4>(test_vector_string, [](auto&& i) { return i == "2"; }));
    assert(recursive_find_if_not<4>(test_vector_string, [](auto&& i) { return i == "3"; }));
    //  Tests with std::string, projection
    assert(recursive_find_if_not<4>(
        test_vector_string,
        [](auto&& i) { return i == "1"; },
        [](auto&& element) {return std::to_string(std::stoi(element) + 1); }));
    assert(recursive_find_if_not<4>(
        test_vector_string,
        [](auto&& i) { return i == "2"; },
        [](auto&& element) {return std::to_string(std::stoi(element) + 1); }) == false);
    //  Tests with std::array of std::string
    std::array<std::string, 3> word_array1 = {"foo", "foo", "foo"};
    assert(recursive_find_if_not<1>(word_array1, [](auto&& i) { return i == "foo"; }) == false);
    assert(recursive_find_if_not<1>(word_array1, [](auto&& i) { return i == "bar"; }));
    std::cout << "All tests passed!\n";
    return;
}
int main()
{
    auto start = std::chrono::system_clock::now();
    recursive_find_tests();
    recursive_find_if_not_tests();
    auto end = std::chrono::system_clock::now();
    std::chrono::duration<double> elapsed_seconds = end - start;
    std::time_t end_time = std::chrono::system_clock::to_time_t(end);
    std::cout << "Computation finished at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << '\n';
    return EXIT_SUCCESS;
}
The output of the test code above:
All tests passed!
All tests passed!
Computation finished at Sat Feb 24 02:56:36 2024
elapsed time: 0.00221348
All suggestions are welcome.
The summary information:
- Which question it is a follow-up to? - A recursive_find_if Template Function with Unwrap Level Implementation in C++ and - recursive_invocable and recursive_project_invocable Concept Implementation in C++ 
- What changes has been made in the code since last question? - I am trying to implement - recursive_findand- recursive_find_if_nottemplate functions in this post.
- Why a new review is being asked for? - Please review the implementation of - recursive_findand- recursive_find_if_nottemplate functions.
