Abstract
1. Neural recordings were made from motor fascicles of the ulnar or radial nerves while the motor cortex was stimulated percutaneously using high-voltage electrical stimuli or transient magnetic pulses to determine whether human muscle spindle endings could be activated by such stimuli and, if so, whether this occurred before the recruitment of alpha-motoneurones. 2. In relaxed subjects, no evidence of muscle spindle activation could be detected in nine recordings of multiunit neural activity and four recordings from single spindle afferents using stimulus levels up to 600 V and 1.5 T. These levels produced a prominent twitch contraction of the intrinsic muscles of the hand and of forearm muscles. Passive stretch of the contracting muscle did not reveal a fusimotor action too weak to be detected under isometric circumstances. 3. With twenty-six single spindle afferents, the stimuli were delivered during a voluntary contraction of the receptor-bearing muscle. This served to 'focus' the effects of the stimulus on the relevant motoneurone pools and increased the probability that fusimotor neurones innervating the endings were active. 4. None of the twenty-six spindle afferents could be activated by stimuli subthreshold for alpha-motoneurones, even when the stimuli were delivered during passive stretch of the contracting muscle. With eighteen afferents, stimuli above threshold for alpha-motoneurones were delivered: twelve remained unaffected but the discharge of six altered. 5. Three afferents were activated at latencies of 35, 39 and 40 ms, respectively 16, 20 and 20 ms after the onset of the EMG potentials in the receptor-bearing muscles. This latency difference is too short to be attributable to activation of gamma-motoneurones: arguments are presented that the increase in spindle discharge could result from activation of beta-motoneurones. 6. The discharge of three afferents increased at latencies of 70, 75 and 85 ms, too early to be due to stretch on the falling phase of the twitch contraction of the receptor-bearing muscle. Responses at these latencies could involve activation of gamma- or beta-motoneurones. 7. These findings in human subjects suggest that transient stimulation of the motor cortex may effectively access fusimotor neurones.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bessou P., Laporte Y., Pagès B. Frequencygrams of spindle primary endings elicited by stimulation of static and dynamic fusimotor fibres. J Physiol. 1968 May;196(1):47–63. doi: 10.1113/jphysiol.1968.sp008493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd S. G., Rothwell J. C., Cowan J. M., Webb P. J., Morley T., Asselman P., Marsden C. D. A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry. 1986 Mar;49(3):251–257. doi: 10.1136/jnnp.49.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke D., Aniss A. M., Gandevia S. C. In-parallel and in-series behavior of human muscle spindle endings. J Neurophysiol. 1987 Aug;58(2):417–426. doi: 10.1152/jn.1987.58.2.417. [DOI] [PubMed] [Google Scholar]
- Burke D., Hicks R. G., Stephen J. P. Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J Physiol. 1990 Jun;425:283–299. doi: 10.1113/jphysiol.1990.sp018103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheney P. D., Preston J. B. Classification of fusimotor fibers in the primate. J Neurophysiol. 1976 Jan;39(1):9–19. doi: 10.1152/jn.1976.39.1.9. [DOI] [PubMed] [Google Scholar]
- Clough J. F., Phillips C. G., Sheridan J. D. The short-latency projection from the baboon's motor cortex to fusimotor neurones of the forearm and hand. J Physiol. 1971 Jul;216(2):257–279. doi: 10.1113/jphysiol.1971.sp009524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day B. L., Dressler D., Maertens de Noordhout A., Marsden C. D., Nakashima K., Rothwell J. C., Thompson P. D. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989 May;412:449–473. doi: 10.1113/jphysiol.1989.sp017626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day B. L., Rothwell J. C., Thompson P. D., Dick J. P., Cowan J. M., Berardelli A., Marsden C. D. Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain. 1987 Oct;110(Pt 5):1191–1209. doi: 10.1093/brain/110.5.1191. [DOI] [PubMed] [Google Scholar]
- Fidone S. J., Preston J. B. Patterns of motor cortex control of flexor and extensor cat fusimotor neurons. J Neurophysiol. 1969 Mar;32(2):103–115. doi: 10.1152/jn.1969.32.2.103. [DOI] [PubMed] [Google Scholar]
- GRANIT R., KAADA B. R. Influence of stimulation of central nervous structures on muscle spindles in cat. Acta Physiol Scand. 1952;27(2-3):130–160. doi: 10.1111/j.1748-1716.1953.tb00930.x. [DOI] [PubMed] [Google Scholar]
- GRANIT R., POMPEIANO O., WALTMAN B. Fast supraspinal control of mammalian muscle spindles: extra- and intrafusal co-activation. J Physiol. 1959 Sep 2;147:385–398. doi: 10.1113/jphysiol.1959.sp006250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandevia S. C., Burke D. Effect of training on voluntary activation of human fusimotor neurons. J Neurophysiol. 1985 Dec;54(6):1422–1429. doi: 10.1152/jn.1985.54.6.1422. [DOI] [PubMed] [Google Scholar]
- Gandevia S. C., Plassman B. L. Responses in human intercostal and truncal muscles to motor cortical and spinal stimulation. Respir Physiol. 1988 Sep;73(3):325–337. doi: 10.1016/0034-5687(88)90054-0. [DOI] [PubMed] [Google Scholar]
- Gandevia S. C., Rothwell J. C. Knowledge of motor commands and the recruitment of human motoneurons. Brain. 1987 Oct;110(Pt 5):1117–1130. doi: 10.1093/brain/110.5.1117. [DOI] [PubMed] [Google Scholar]
- Gregory J. E., Morgan D. L., Proske U. Aftereffects in the responses of cat muscle spindles and errors of limb position sense in man. J Neurophysiol. 1988 Apr;59(4):1220–1230. doi: 10.1152/jn.1988.59.4.1220. [DOI] [PubMed] [Google Scholar]
- Grigg P., Preston J. B. Baboon flexor and extensor fusimotor neurons and their modulation by motor cortex. J Neurophysiol. 1971 May;34(3):428–436. doi: 10.1152/jn.1971.34.3.428. [DOI] [PubMed] [Google Scholar]
- Hagbarth K. E., Hägglund J. V., Nordin M., Wallin E. U. Thixotropic behaviour of human finger flexor muscles with accompanying changes in spindle and reflex responses to stretch. J Physiol. 1985 Nov;368:323–342. doi: 10.1113/jphysiol.1985.sp015860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess C. W., Mills K. R., Murray N. M. Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol. 1987 Jul;388:397–419. doi: 10.1113/jphysiol.1987.sp016621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inghilleri M., Berardelli A., Cruccu G., Priori A., Manfredi M. Corticospinal potentials after transcranial stimulation in humans. J Neurol Neurosurg Psychiatry. 1989 Aug;52(8):970–974. doi: 10.1136/jnnp.52.8.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATO M., TAKAMURA H., FUJIMORI B. STUDIES ON EFFECTS OF PYRAMID STIMULATION UPON FLEXOR AND EXTENSOR MOTONEURONES AND GAMMA MOTONEURONES. Jpn J Physiol. 1964 Feb 15;14:33–44. [PubMed] [Google Scholar]
- Kernell D., Chien-Ping W. U. Responses of the pyramidal tract to stimulation of the baboon's motor cortex. J Physiol. 1967 Aug;191(3):653–672. doi: 10.1113/jphysiol.1967.sp008273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kernell D., Chien-Ping W. Post-synaptic effects of cortical stimulation on forelimb motoneurones in the baboon. J Physiol. 1967 Aug;191(3):673–690. doi: 10.1113/jphysiol.1967.sp008274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koeze T. H., Phillips C. G., Sheridan J. D. Thresholds of cortical activation of muslce spindles and alpha motoneurones of the baboon's hand. J Physiol. 1968 Mar;195(2):419–449. doi: 10.1113/jphysiol.1968.sp008466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koeze T. H. Thresholds of cortical activation of baboon alpha and gamma-motoneurones during halothane anaesthesia. J Physiol. 1973 Mar;229(2):319–337. doi: 10.1113/jphysiol.1973.sp010140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laursen A. M., Wiesendanger M. Pyramidal effect on alpha and gamma motoneurons. Acta Physiol Scand. 1966 Jun;67(2):165–172. doi: 10.1111/j.1748-1716.1966.tb03297.x. [DOI] [PubMed] [Google Scholar]
- MORTIMER E. M., AKERT K. Cortical control and representation of fusimotor neurons. Am J Phys Med. 1961 Dec;40:228–248. [PubMed] [Google Scholar]
- Marsden C. D., Merton P. A., Morton H. B. Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Adv Neurol. 1983;39:387–391. [PubMed] [Google Scholar]
- McKeon B., Burke D. Identification of muscle spindle afferents during in vivo recordings in man. Electroencephalogr Clin Neurophysiol. 1980 May;48(5):606–608. doi: 10.1016/0013-4694(80)90297-7. [DOI] [PubMed] [Google Scholar]
- Merton P. A., Morton H. B. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980 May 22;285(5762):227–227. doi: 10.1038/285227a0. [DOI] [PubMed] [Google Scholar]
- Mills K. R., Murray N. M. Electrical stimulation over the human vertebral column: which neural elements are excited? Electroencephalogr Clin Neurophysiol. 1986 Jun;63(6):582–589. doi: 10.1016/0013-4694(86)90145-8. [DOI] [PubMed] [Google Scholar]
- PATTON H. D., AMASSIAN V. E. Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol. 1954 Jul;17(4):345–363. doi: 10.1152/jn.1954.17.4.345. [DOI] [PubMed] [Google Scholar]
- Plassman B. L., Gandevia S. C. Comparison of human motor cortical projections to abdominal muscles and intrinsic muscles of the hand. Exp Brain Res. 1989;78(2):301–308. doi: 10.1007/BF00228901. [DOI] [PubMed] [Google Scholar]
- Plassman B. L., Gandevia S. C. High-voltage stimulation over the human spinal cord: sources of latency variation. J Neurol Neurosurg Psychiatry. 1989 Feb;52(2):213–217. doi: 10.1136/jnnp.52.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribot E., Roll J. P., Vedel J. P. Efferent discharges recorded from single skeletomotor and fusimotor fibres in man. J Physiol. 1986 Jun;375:251–268. doi: 10.1113/jphysiol.1986.sp016115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossini P. M., Marciani M. G., Caramia M., Roma V., Zarola F. Nervous propagation along 'central' motor pathways in intact man: characteristics of motor responses to 'bifocal' and 'unifocal' spine and scalp non-invasive stimulation. Electroencephalogr Clin Neurophysiol. 1985 Oct;61(4):272–286. doi: 10.1016/0013-4694(85)91094-6. [DOI] [PubMed] [Google Scholar]
- Rothwell J. C., Thompson P. D., Day B. L., Dick J. P., Kachi T., Cowan J. M., Marsden C. D. Motor cortex stimulation in intact man. 1. General characteristics of EMG responses in different muscles. Brain. 1987 Oct;110(Pt 5):1173–1190. doi: 10.1093/brain/110.5.1173. [DOI] [PubMed] [Google Scholar]
- Thayer S. A., Miller R. J. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. J Physiol. 1990 Jun;425:85–115. doi: 10.1113/jphysiol.1990.sp018094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallbo A. B., Hagbarth K. E., Torebjörk H. E., Wallin B. G. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979 Oct;59(4):919–957. doi: 10.1152/physrev.1979.59.4.919. [DOI] [PubMed] [Google Scholar]
- Vallbo A. B. Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects. J Physiol. 1971 Oct;218(2):405–431. doi: 10.1113/jphysiol.1971.sp009625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vedel J. P., Mouillac-Baudevin J. Contrôle pyramidal de l'activité des fibres fusimotrices dynamiques et statiques chez le chat. Exp Brain Res. 1970;10(1):39–63. doi: 10.1007/BF00340518. [DOI] [PubMed] [Google Scholar]
- Yokota T., Voorhoeve P. E. Pyramidal control of fusimotor neurons supplying extensor muscles in the cat's forelimb. Exp Brain Res. 1969;9(2):96–115. doi: 10.1007/BF00238324. [DOI] [PubMed] [Google Scholar]
