Approach #1
We can use 1D convolution -
def nzeros(a, n):
# Define kernel for 1D convolution
k = np.ones(n,dtype=int)
# Get sliding summations for zero matches with that kernel
s = np.convolve(a==0,k)
# Look for summations that are equal to n value, which will occur for
# n consecutive 0s. Remember that we are using a "full" version of
# convolution, so there's one-off offsetting because of the way kernel
# slides across input data. Also, we need to create 1s at places where
# n consective 0s end, so we would need to slice out ending elements.
# Thus, we would end up with the following after int dtype conversion
return (s==n).astype(int)[:-n+1]
Sample run -
In [46]: a
Out[46]: array([0, 0, 0, 0, 1, 0, 0, 0, 1, 1])
In [47]: nzeros(a,3)
Out[47]: array([0, 0, 1, 1, 0, 0, 0, 1, 0, 0])
In [48]: nzeros(a,2)
Out[48]: array([0, 1, 1, 1, 0, 0, 1, 1, 0, 0])
Approach #2
Another way to solve and this could be considered as a variant of the 1D convolution approach, would be to use erosion, because if you look at the outputs, we can simply erode the mask of 0s from the starts until n-1 places. So, we can use scipy.ndimage.morphology's binary_erosion that also allow us to specify the portion of kernel center with its origin arg, hence we will avoid any slicing. The implementation would look something like this -
from scipy.ndimage.morphology import binary_erosion
out = binary_erosion(a==0,np.ones(n),origin=(n-1)//2).astype(int)