As the title implies, I would like to add an empty row to my MultiIndex DataFrame. The first level index needs to have a defined index value and the second level index needs to be np.nan. The values in the columns need to be np.nan.
Consider the following:
import pandas as pd
import numpy as np
iterables = [['foo'], ['r_1', 'r_2', 'r_3']]
idx = pd.MultiIndex.from_product(iterables, names=['idx_1', 'idx_2'])
data = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]
df = pd.DataFrame(data, idx, columns=['col_1', 'col_2', 'col_3'])
df
Out[93]:
col_1 col_2 col_3
idx_1 idx_2
foo r_1 1 2 3
r_2 4 5 6
r_3 7 8 9
I would normally append a Series if this were a not a MultiIndex like this:
s = pd.Series(
[np.nan, np.nan, np.nan],
index=['col_1', 'col_2', 'col_3'],
name='bar'
)
df.append(s)
Out[95]:
col_1 col_2 col_3
(foo, r_1) 1.0 2.0 3.0
(foo, r_2) 4.0 5.0 6.0
(foo, r_3) 7.0 8.0 9.0
bar NaN NaN NaN
In this case, my MultiIndex is converted to tuples. I can't ignore_index=True in the append method because that removes the MultiIndex. I feel like I'm close, yet so far.
My output should look like this:
# some magic
Out[96]:
col_1 col_2 col_3
col_a col_b
foo r_1 1.0 2.0 3.0
r_2 4.0 5.0 6.0
r_3 7.0 8.0 9.0
bar NaN NaN NaN NaN
(Also acceptable to have the second level index None).
How do I do this?
Using Python 3.6 and Pandas 0.20.3.