First off, I think the original method you propose is totally fine. It's readable, it makes sense, and it's not very slow.
You could use the repeat method instead of function which reads a bit more nicely:
>>> x.repeat(3, 1).repeat(3, 0)
array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
[1, 1, 1, 2, 2, 2, 3, 3, 3],
[1, 1, 1, 2, 2, 2, 3, 3, 3]])
With numpy's broadcasting rules, there's likely dozens of ways to create the repeated data and throw it around into the shape you want, too. One approach could be to use np.broadcast_to() and repeat the data in D+1 dimensions, where D is the dimension you need, and then collapse it down to D.
For example:
>>> x = np.array([[1, 2, 3]])
>>> np.broadcast_to(x.T, (3, 3, 3)).reshape((3, 9))
array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
[1, 1, 1, 2, 2, 2, 3, 3, 3],
[1, 1, 1, 2, 2, 2, 3, 3, 3]])
And without reshaping (so that you don't need to know the final length):
>>> np.hstack(np.broadcast_to(x, (3, 3, 3)).T)
array([[1, 1, 1, 2, 2, 2, 3, 3, 3],
[1, 1, 1, 2, 2, 2, 3, 3, 3],
[1, 1, 1, 2, 2, 2, 3, 3, 3]])
And there's likely a dozen other ways to do this. But I still think your original version is more idiomatic, as throwing it into extra dimensions to collapse it down is weird.
np.repeatpreferably. You'd think that one of the other examples should work.repeatcorrectly, or the API is warty.kron, etc), but this double repeat is hands down the speed winner.