Here's one approach that is significantly faster than V2: take img1-img2, and multiply by 1 or -1 depending on img1>img2. Here's how it is implemented:
def differenceImageV6(img1, img2):
a = img1-img2
b = np.uint8(img1<img2) * 254 + 1
return a * b
A test harness for testing performance:
import numpy as np
img1=np.uint8(np.random.randint(0, 255, (480, 640)))
img2=np.uint8(np.random.randint(0, 255, (480, 640)))
def differenceImageV1(img1, img2):
diff=np.empty_like(img1)
h, w=img1.shape
for y in range(h):
for x in range(w):
if img1[y, x]<img2[y, x]: diff[y, x]=img2[y, x]-img1[y, x]
else: diff[y, x]=img1[y, x]-img2[y, x]
return(diff)
def differenceImageV2(img1, img2):
return(np.uint8(np.abs(np.int16(img1)-img2)))
def differenceImageV3(img1, img2): # fast - but wrong result
return(img1-img2)
def differenceImageV4(img1, img2):
return np.where(img1>img2, img1-img2, img2-img1)
def differenceImageV5(img1, img2):
a = img1-img2
b = img2-img1
c = img1>img2
return a*c + b*(~c)
def differenceImageV6(img1, img2):
a = img1-img2
b = np.uint8(img1<img2) * 254 + 1
return a * b
import timeit
def testit():
for fn in [differenceImageV2, differenceImageV3, differenceImageV4, differenceImageV5, differenceImageV6]:
print fn.__name__, np.sum(fn(img1, img2).astype('int64')),
print timeit.timeit("%s(img1, img2)" % fn.__name__, "from test import img1, img2, %s" % fn.__name__, number=1000)
if __name__ == '__main__':
testit()
and resulting performance numbers:
differenceImageV2 26071358 0.982538938522
differenceImageV3 39207702 0.0261280536652
differenceImageV4 26071358 1.36270809174
differenceImageV5 26071358 0.220561981201
differenceImageV6 26071358 0.154536962509
differenceImageV6 is about 6x slower than the incorrect differenceImageV3, but still about 6x faster than the previous best differenceImageV2. differenceImageV1 isn't tested because it's easily a few orders of magnitude slower than the rest.
Note: I included an np.where approach for comparison; I thought it might have good performance but it turns out to be fairly poor. It seems that performing slicing by a boolean array is quite slow in NumPy.
np.int16(img2)indifferenceImageV2, and can just useimg2. Also, are you using thetimeitlibrary for accurate timing results?return(np.uint8(np.absolute(np.int16(img1)-img2))).img1is still casted to anint16, so the result will be anint16and can allow the same negative numbers that doing the cast beforehand will do.np.sumgives the same result. It just doesn't take a copy of the entire array first. I shave off about 70 ms for 1000 loops.np.int16(img1)-img2. The execution time goes down to 400.39 ms for 1000 loops. And no, I usetime.process_time()here, because I do not care about one or ten milliseconds.