I might understand the question incorrectly, but if you want to declare an array of a certain shape but with nothing inside, the following might be helpful:
Initialise empty array:
>>> a = np.zeros((0,3)) #or np.empty((0,3)) or np.array([]).reshape(0,3)
>>> a
array([], shape=(0, 3), dtype=float64)
Now you can use this array to append rows of similar shape to it. Remember that a numpy array is immutable, so a new array is created for each iteration:
>>> for i in range(3):
...     a = np.vstack([a, [i,i,i]])
...
>>> a
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  1.],
       [ 2.,  2.,  2.]])
np.vstack and np.hstack is the most common method for combining numpy arrays, but coming from Matlab I prefer np.r_ and np.c_:
Concatenate 1d:
>>> a = np.zeros(0)
>>> for i in range(3):
...     a = np.r_[a, [i, i, i]]
...
>>> a
array([ 0.,  0.,  0.,  1.,  1.,  1.,  2.,  2.,  2.])
Concatenate rows:
>>> a = np.zeros((0,3))
>>> for i in range(3):
...     a = np.r_[a, [[i,i,i]]]
...
>>> a
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  1.],
       [ 2.,  2.,  2.]])
Concatenate columns:
>>> a = np.zeros((3,0))
>>> for i in range(3):
...     a = np.c_[a, [[i],[i],[i]]]
...
>>> a
array([[ 0.,  1.,  2.],
       [ 0.,  1.,  2.],
       [ 0.,  1.,  2.]])