You can actually define your template class inside a .template file rather than a .cpp file. Whoever is saying you can only define it inside a header file is wrong. This is something that works all the way back to c++ 98.
Don't forget to have your compiler treat your .template file as a c++ file to keep the intelli sense.
Here is an example of this for a dynamic array class.
#ifndef dynarray_h
#define dynarray_h
#include <iostream>
template <class T>
class DynArray{
int capacity_;
int size_;
T* data;
public:
explicit DynArray(int size = 0, int capacity=2);
DynArray(const DynArray& d1);
~DynArray();
T& operator[]( const int index);
void operator=(const DynArray<T>& d1);
int size();
int capacity();
void clear();
void push_back(int n);
void pop_back();
T& at(const int n);
T& back();
T& front();
};
#include "dynarray.template" // this is how you get the header file
#endif
Now inside you .template file you define your functions just how you normally would.
template <class T>
DynArray<T>::DynArray(int size, int capacity){
if (capacity >= size){
this->size_ = size;
this->capacity_ = capacity;
data = new T[capacity];
}
// for (int i = 0; i < size; ++i) {
// data[i] = 0;
// }
}
template <class T>
DynArray<T>::DynArray(const DynArray& d1){
//clear();
//delete [] data;
std::cout << "copy" << std::endl;
this->size_ = d1.size_;
this->capacity_ = d1.capacity_;
data = new T[capacity()];
for(int i = 0; i < size(); ++i){
data[i] = d1.data[i];
}
}
template <class T>
DynArray<T>::~DynArray(){
delete [] data;
}
template <class T>
T& DynArray<T>::operator[]( const int index){
return at(index);
}
template <class T>
void DynArray<T>::operator=(const DynArray<T>& d1){
if (this->size() > 0) {
clear();
}
std::cout << "assign" << std::endl;
this->size_ = d1.size_;
this->capacity_ = d1.capacity_;
data = new T[capacity()];
for(int i = 0; i < size(); ++i){
data[i] = d1.data[i];
}
//delete [] d1.data;
}
template <class T>
int DynArray<T>::size(){
return size_;
}
template <class T>
int DynArray<T>::capacity(){
return capacity_;
}
template <class T>
void DynArray<T>::clear(){
for( int i = 0; i < size(); ++i){
data[i] = 0;
}
size_ = 0;
capacity_ = 2;
}
template <class T>
void DynArray<T>::push_back(int n){
if (size() >= capacity()) {
std::cout << "grow" << std::endl;
//redo the array
T* copy = new T[capacity_ + 40];
for (int i = 0; i < size(); ++i) {
copy[i] = data[i];
}
delete [] data;
data = new T[ capacity_ * 2];
for (int i = 0; i < capacity() * 2; ++i) {
data[i] = copy[i];
}
delete [] copy;
capacity_ *= 2;
}
data[size()] = n;
++size_;
}
template <class T>
void DynArray<T>::pop_back(){
data[size()-1] = 0;
--size_;
}
template <class T>
T& DynArray<T>::at(const int n){
if (n >= size()) {
throw std::runtime_error("invalid index");
}
return data[n];
}
template <class T>
T& DynArray<T>::back(){
if (size() == 0) {
throw std::runtime_error("vector is empty");
}
return data[size()-1];
}
template <class T>
T& DynArray<T>::front(){
if (size() == 0) {
throw std::runtime_error("vector is empty");
}
return data[0];
}