Skip to main content
deleted 2 characters in body
Source Link
Nico Schlömer
  • 59.6k
  • 35
  • 216
  • 290

I had np.array(n * [value]) in mind, but apparently that is slower than all other suggestions for large enough n. The best in terms of readability and speed is

np.full((n), 3.14)

Here is full comparison with perfplot (a pet project of mine).

enter image description here

The two empty alternatives are still the fastest (with NumPy 1.12.1). full catches up for large arrays.


Code to generate the plot:

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)

I had np.array(n * [value]) in mind, but apparently that is slower than all other suggestions for large enough n. The best in terms of readability and speed is

np.full((n), 3.14)

Here is full comparison with perfplot (a pet project of mine).

enter image description here

The two empty alternatives are still the fastest (with NumPy 1.12.1). full catches up for large arrays.


Code to generate the plot:

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)

I had np.array(n * [value]) in mind, but apparently that is slower than all other suggestions for large enough n. The best in terms of readability and speed is

np.full(n, 3.14)

Here is full comparison with perfplot (a pet project of mine).

enter image description here

The two empty alternatives are still the fastest (with NumPy 1.12.1). full catches up for large arrays.


Code to generate the plot:

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)
edited body
Source Link
Nico Schlömer
  • 59.6k
  • 35
  • 216
  • 290

I had

numpy.array(n * [value])

np.array(n * [value]) in mind, but apparently that is slower than all other suggestions for large enough n. The best in terms of readability and speed is

np.full((n), 3.14)

Here is full comparison with perfplot (a pet project of mine).

enter image description hereenter image description here

The two empty alternatives are still the fastest (with NumPy 1.12.1). full catches up for large arrays.


Code to generate the plot:

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)

I had

numpy.array(n * [value])

in mind, but apparently that is slower than all other suggestions for large enough n.

Here is full comparison with perfplot (a pet project of mine).

enter image description here

The two empty alternatives are still the fastest (with NumPy 1.12.1). full catches up for large arrays.


Code to generate the plot:

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)

I had np.array(n * [value]) in mind, but apparently that is slower than all other suggestions for large enough n. The best in terms of readability and speed is

np.full((n), 3.14)

Here is full comparison with perfplot (a pet project of mine).

enter image description here

The two empty alternatives are still the fastest (with NumPy 1.12.1). full catches up for large arrays.


Code to generate the plot:

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)
deleted 174 characters in body
Source Link
Nico Schlömer
  • 59.6k
  • 35
  • 216
  • 290
numpy.array(n * [value])
numpy.array(n * [value])

enter image description hereenter image description here

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[
        empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array
        ],
    n_range=[2**k for k in range(27)],
    xlabel='len(a)',
    logx=True,
    logy=True,
    )
import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)
numpy.array(n * [value])

enter image description here

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[
        empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array
        ],
    n_range=[2**k for k in range(27)],
    xlabel='len(a)',
    logx=True,
    logy=True,
    )
numpy.array(n * [value])

enter image description here

import numpy as np
import perfplot


def empty_fill(n):
    a = np.empty(n)
    a.fill(3.14)
    return a


def empty_colon(n):
    a = np.empty(n)
    a[:] = 3.14
    return a


def ones_times(n):
    return 3.14 * np.ones(n)


def repeat(n):
    return np.repeat(3.14, (n))


def tile(n):
    return np.repeat(3.14, [n])


def full(n):
    return np.full((n), 3.14)


def list_to_array(n):
    return np.array(n * [3.14])


perfplot.show(
    setup=lambda n: n,
    kernels=[empty_fill, empty_colon, ones_times, repeat, tile, full, list_to_array],
    n_range=[2 ** k for k in range(27)],
    xlabel="len(a)",
    logx=True,
    logy=True,
)
edited body
Source Link
Nico Schlömer
  • 59.6k
  • 35
  • 216
  • 290
Loading
added 111 characters in body
Source Link
Nico Schlömer
  • 59.6k
  • 35
  • 216
  • 290
Loading
edited body
Source Link
Nico Schlömer
  • 59.6k
  • 35
  • 216
  • 290
Loading
Source Link
Nico Schlömer
  • 59.6k
  • 35
  • 216
  • 290
Loading