Skip to main content
Remove unecessary quote blocks
Source Link
user438383
  • 6.3k
  • 10
  • 32
  • 49

Side note: One mistake many beginners make is the usage of variable length arrays. This is a GNU extension and also one in Clang because they mirror many of GCC's extensions. So the following int arr[n] should not be relied on.

Side note: One mistake many beginners make is the usage of variable length arrays. This is a GNU extension and also one in Clang because they mirror many of GCC's extensions. So the following int arr[n] should not be relied on.

Side note: One mistake many beginners make is the usage of variable length arrays. This is a GNU extension and also one in Clang because they mirror many of GCC's extensions. So the following int arr[n] should not be relied on.

Side note: One mistake many beginners make is the usage of variable length arrays. This is a GNU extension and also one in Clang because they mirror many of GCC's extensions. So the following int arr[n] should not be relied on.

Fix scope error
Source Link
Timothy Baldwin
  • 3.8k
  • 1
  • 17
  • 29
{
    std::string* s = new std::string;
}
    delete s; // destructor called
}
{
    std::string* s = new std::string;
}
delete s; // destructor called
{
    std::string* s = new std::string;
    delete s; // destructor called
}

Of course, if you used an std::string instead, std::string internally resizes itself so that shouldn't be a problem. But essentially the solution to this problem is dynamic allocation. You can allocate dynamic memory based on the input of the user, for example:

Because the heap is much bigger than the stack, one can arbitraryarbitrarily allocate/reallocate as much memory as he/she needs, whereas the stack has a limitation.

How is this a benefit you ask? The answer will become clear once you understand the confusion/myth behind arrays and pointers. It is commonly assumed that they are the same, but they are not. This myth comes from the fact that pointers can be subscripted just like arrays and because of arrays decay to pointers at the top level in a function declaration. However, once an array decays to a pointer, the pointer loses its sizeof information. So sizeof(pointer) will give the size of the pointer in bytes, which is usually 8 bytes on a 64-bit system.

On the other hand, you can do whatever you want with pointers. Unfortunately, because the distinction between pointers and arrays are hand-waved in Java and C#, beginners don't understand the difference.

After seeing all the great things dynamic allocation can do, you're probably wondering why wouldn't anyone NOT use dynamic allocation all the time? I already told you one reason, the heap is slow. And if you don't need all that memory, you shouldn't abuse it. So here'shere are some disadvantages in no particular order:

  • It is error prone-prone. Manual memory allocation is dangerous and you are prone to leaks. If you are not proficient at using the debugger or valgrind (a memory leak tool), you may pull your hair out of your head. Luckily RAII idioms and smart pointers alleviate this a bit, but you must be familiar with practices such as The Rule Of Three and The Rule Of Five. It is a lot of information to take in, and beginners who either don't know or don't care will fall into this trap.

  • It is not necessary. Unlike Java and C# where it is idiomatic to use the new keyword everywhere, in C++, you should only use it if you need to. The common phrase goes, everything looks like a nail if you have a hammer. Whereas beginners who start with C++ are scared of pointers and learn to use stack variables by habit, Java and C# programmers start by using pointers without understanding it! That is literally stepping off on the wrong foot. You must abandon everything you know because the syntax is one thing, learning the language is another.

Of course if you used an std::string instead, std::string internally resizes itself so that shouldn't be a problem. But essentially the solution to this problem is dynamic allocation. You can allocate dynamic memory based on input of the user, for example:

Because the heap is much bigger than the stack, one can arbitrary allocate/reallocate as much memory as he/she needs, whereas the stack has a limitation.

How is this a benefit you ask? The answer will become clear once you understand the confusion/myth behind arrays and pointers. It is commonly assumed that they are the same, but they are not. This myth comes from the fact that pointers can be subscripted just like arrays and because arrays decay to pointers at the top level in a function declaration. However, once an array decays to a pointer, the pointer loses its sizeof information. So sizeof(pointer) will give the size of the pointer in bytes, which is usually 8 bytes on a 64-bit system.

On the other hand, you can do whatever you want with pointers. Unfortunately because the distinction between pointers and arrays are hand-waved in Java and C#, beginners don't understand the difference.

After seeing all the great things dynamic allocation can do, you're probably wondering why wouldn't anyone NOT use dynamic allocation all the time? I already told you one reason, the heap is slow. And if you don't need all that memory, you shouldn't abuse it. So here's some disadvantages in no particular order:

  • It is error prone. Manual memory allocation is dangerous and you are prone to leaks. If you are not proficient at using the debugger or valgrind (a memory leak tool), you may pull your hair out of your head. Luckily RAII idioms and smart pointers alleviate this a bit, but you must be familiar with practices such as The Rule Of Three and The Rule Of Five. It is a lot of information to take in, and beginners who either don't know or don't care will fall into this trap.

  • It is not necessary. Unlike Java and C# where it is idiomatic to use the new keyword everywhere, in C++, you should only use it if you need to. The common phrase goes, everything looks like a nail if you have a hammer. Whereas beginners who start with C++ are scared of pointers and learn to use stack variables by habit, Java and C# programmers start by using pointers without understanding it! That is literally stepping off on the wrong foot. You must abandon everything you know because syntax is one thing, learning the language is another.

Of course, if you used an std::string instead, std::string internally resizes itself so that shouldn't be a problem. But essentially the solution to this problem is dynamic allocation. You can allocate dynamic memory based on the input of the user, for example:

Because the heap is much bigger than the stack, one can arbitrarily allocate/reallocate as much memory as he/she needs, whereas the stack has a limitation.

How is this a benefit you ask? The answer will become clear once you understand the confusion/myth behind arrays and pointers. It is commonly assumed that they are the same, but they are not. This myth comes from the fact that pointers can be subscripted just like arrays and because of arrays decay to pointers at the top level in a function declaration. However, once an array decays to a pointer, the pointer loses its sizeof information. So sizeof(pointer) will give the size of the pointer in bytes, which is usually 8 bytes on a 64-bit system.

On the other hand, you can do whatever you want with pointers. Unfortunately, because the distinction between pointers and arrays are hand-waved in Java and C#, beginners don't understand the difference.

After seeing all the great things dynamic allocation can do, you're probably wondering why wouldn't anyone NOT use dynamic allocation all the time? I already told you one reason, the heap is slow. And if you don't need all that memory, you shouldn't abuse it. So here are some disadvantages in no particular order:

  • It is error-prone. Manual memory allocation is dangerous and you are prone to leaks. If you are not proficient at using the debugger or valgrind (a memory leak tool), you may pull your hair out of your head. Luckily RAII idioms and smart pointers alleviate this a bit, but you must be familiar with practices such as The Rule Of Three and The Rule Of Five. It is a lot of information to take in, and beginners who either don't know or don't care will fall into this trap.

  • It is not necessary. Unlike Java and C# where it is idiomatic to use the new keyword everywhere, in C++, you should only use it if you need to. The common phrase goes, everything looks like a nail if you have a hammer. Whereas beginners who start with C++ are scared of pointers and learn to use stack variables by habit, Java and C# programmers start by using pointers without understanding it! That is literally stepping off on the wrong foot. You must abandon everything you know because the syntax is one thing, learning the language is another.

replaced http://stackoverflow.com/ with https://stackoverflow.com/
Source Link
URL Rewriter Bot
URL Rewriter Bot
Loading
Source Link
user3391320
  • 1.1k
  • 7
  • 9
Loading