DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. Low-order Extractor learns feature interaction through product between vectors. Factorization-Machine and it’s variants are widely used to learn the low-order feature interaction. High-order Extractor learns feature combination through complex neural network functions like MLP, Cross Net, etc.

Features

  • Attentional Factorization Machine
  • Piece-wise Linear Model
  • Neural Factorization Machine
  • Deep Interest Evolution Network
  • Product-based Neural Network
  • Convolutional Click Prediction Model

Project Samples

Project Activity

See All Activity >

License

Apache License V2.0

Follow DeepCTR-Torch

DeepCTR-Torch Web Site

Other Useful Business Software
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of DeepCTR-Torch!

Additional Project Details

Programming Language

Python

Related Categories

Python UML Tool, Python Machine Learning Software, Python Deep Learning Frameworks

Registered

2022-08-09