Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Hepatology

  • 134 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 13
  • 14
  • Next →
Preclinical assessment of oral TLR7 agonist SA-5 in a non-human primate model
Shokichi Takahama, … , Tatsuya Kanto, Takuya Yamamoto
Shokichi Takahama, … , Tatsuya Kanto, Takuya Yamamoto
Published November 11, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.196809.
View: Text | PDF

Preclinical assessment of oral TLR7 agonist SA-5 in a non-human primate model

  • Text
  • PDF
Abstract

Toll-like receptor 7 (TLR7) agonists are promising immunostimulatory agents for the treatment of chronic infections and cancer. However, their systemic toxicity remains a challenge. In this study, SA-5, a novel liver-targeted, orally available TLR7 agonist, was evaluated for pharmacokinetics, safety, and efficacy in young and aged macaques across 1–10 mg/kg repeated doses. Safety was evaluated through hematologic, biochemical, and flow cytometric profiling, while efficacy was assessed via IFN-α production, gene expression of interferon-stimulated genes, and plasmacytoid dendritic cell activation. A principal component analysis (PCA)-based composite scoring system was used to integrate multimodal parameters. SA-5 induced dose-dependent type I IFN with limited systemic inflammation, with 3 mg/kg showing optimal balance. SA-5 had comparable immunostimulatory activity to GS-9620 but with reduced adverse biomarker shifts. In aged macaques, efficacy was maintained with modestly increased safety responses. These findings support SA-5 as a safer next-generation TLR7 agonist effective across age groups, highlighting integrated biomarker profiling in preclinical immunomodulatory drug development.

Authors

Shokichi Takahama, Takahiro Tomiyama, Sachiyo Yoshio, Yuta Nagatsuka, Hirotomo Murakami, Takuto Nogimori, Mami Kochi, Shoko Ochiai, Hidenori Kimura, Akihisa Fukushima, Tatsuya Kanto, Takuya Yamamoto

×

A rebrand for proteasome inhibition in solid tumors via continuous hepatic artery infusion
Carolina M. Larrain, … , William D. Figg, Jonathan M. Hernandez
Carolina M. Larrain, … , William D. Figg, Jonathan M. Hernandez
Published November 4, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.199200.
View: Text | PDF

A rebrand for proteasome inhibition in solid tumors via continuous hepatic artery infusion

  • Text
  • PDF
Abstract

Authors

Carolina M. Larrain, Jack H. Victory, Priyanka P. Desai, Lindsay R. Friedman, Hannah Stepp, Rachel Ashe, Kirsten Remmert, Surajit Sinha, Emily C. Smith, Nicole Russell, Tracey Pu, Alyssa V. Eade, Justine F. Burke, Jason Ho, Michael B. Yaffe, David E. Kleiner, Keith Schmidt, William D. Figg, Jonathan M. Hernandez

×

ETS1 suppresses Hepatic Stellate Cell activation and liver fibrosis
Wonseok Lee, … , David A. Brenner, Tatiana Kisseleva
Wonseok Lee, … , David A. Brenner, Tatiana Kisseleva
Published November 4, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.195242.
View: Text | PDF

ETS1 suppresses Hepatic Stellate Cell activation and liver fibrosis

  • Text
  • PDF
Abstract

Chronic liver injury results in activation of quiescent Hepatic Stellate Cells (qHSCs) into Collagen Type I-producing activated HSCs that make liver fibrotic. We identified ETS1/2 (E26 transformation-specific transcription factors 1/2) as lineage-specific transcription factors regulating HSC phenotypes. Here we investigated the role of ETS1/2 in HSCs in liver fibrosis using toxic liver injury models and 3D human liver spheroids. Liver fibrosis was induced in wild-type and HSC-specific Ets1 (Ets1ΔHSC) and Ets2 (Ets2ΔHSC) knockout mice by administration of carbon tetrachloride for 6 weeks, following cessation of liver injury for 2 weeks. Liver fibrosis was more severe in Ets1ΔHSC, and to lesser extent in Ets2ΔHSC, compared to wild-type mice. Regression of liver fibrosis was suppressed only in Ets1ΔHSC, indicating Ets1 as the predominant isoform maintaining quiescent-like phenotype in HSCs. Similar results were obtained in a MASH model using 3D human liver spheroids. Knockdown of ETS1 in human HSCs caused upregulation of fibrogenic genes in MASH human liver spheroids and prevented fibrosis regression. ETS1 regulated the qHSC phenotype via CRTC2/PGC1α/PPARγ pathway. Knockdown of CRTC2 (cAMP response element-binding protein (CREB)-regulated transcription co-activator 2) abrogated PPARγ responses and facilitated HSC activation. These findings suggest that ETS1 may represent a therapeutic target for anti-fibrotic therapy.

Authors

Wonseok Lee, Xiao Liu, Sara Brin Rosenthal, Charlene Miciano, Sadatsugu Sakane, Kanani Hokutan, Debanjan Dhar, Hyun Young Kim, David A. Brenner, Tatiana Kisseleva

×

PNPLA3-I148M genetic variant rewires lipid metabolism to drive programmed cell death in human hepatocytes
Rodrigo M. Florentino, … , Deepak Nagrath, Alejandro Soto-Gutierrez
Rodrigo M. Florentino, … , Deepak Nagrath, Alejandro Soto-Gutierrez
Published October 21, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.193805.
View: Text | PDF

PNPLA3-I148M genetic variant rewires lipid metabolism to drive programmed cell death in human hepatocytes

  • Text
  • PDF
Abstract

Genetic variants in lipid metabolism influence the risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD), cirrhosis, and end-stage liver disease (ESLD). The mechanisms by which these variants drive disease are poorly understood. Because of the PNPLA3-I148M variant's strong correlation with all stages of the MASLD spectrum and the lack of tractable therapeutic targets, we sought to understand its impact on cellular function and liver metabolism. Primary human hepatocytes (HAH) and iPSC-derived hepatocytes (iHeps) from healthy individuals possessing the PNPLA3-I148M mutation were characterized for changes in lipid metabolism, cellular stress, and survival. Using lipidomics, metabolomics, stable isotope tracing, and flux propensity analysis, we created a comprehensive metabolic profile of the changes associated with the PNPLA3-I148M variant. Functional analysis showed that the presence of the PNPLA3-I148M variant increased endoplasmic reticulum stress, mitochondrial dysfunction, and peroxisomal β-oxidation, ultimately leading to cell death via ferroptosis. Nutritional interventions, ferroptosis-specific inhibitors, and genetic approaches modulating GPX4 activity in PNPLA3-I148M HAH and iHeps decreased programmed cell death. Our findings indicate that therapies targeting ferroptosis in patients carrying the PNPLA3-I148M variant could affect the development of MASLD and ESLD and highlight the utility of iPSC-based models for the study of genetic contributions to hepatic disorders.

Authors

Rodrigo M. Florentino, Olamide Animasahun, Nils Haep, Minal Nenwani, Kehinde Omoloja, Leyla Nurcihan Altay, Abhinav Achreja, Kazutoyo Morita, Takashi Motomura, Ricardo Diaz-Aragon, Lanuza AP Faccioli, Yiyue Sun, Zhenghao Liu, Zhiping Hu, Bo Yang, Fulei Wuchu, Ajay Shankaran, Miya Paserba, Annalisa M. Baratta, Shohrat Arazov, Zehra N. Kocas-Kilicarslan, Noah Meurs, Jaideep Behari, Edgar N. Tafaleng, Jonathan Franks, Alina Ostrowska, Takahiro Tomiyama, Kyohei Yugawa, Akinari Morinaga, Zi Wang, Kazuki Takeishi, Dillon C. Gavlock, Mark Miedel, D. Lansing Taylor, Ira J. Fox, Tomoharu Yoshizumi, Deepak Nagrath, Alejandro Soto-Gutierrez

×

Posttranscriptional control of hepatic CEACAM1 3′UTR by human antigen R (HuR) mitigates sterile liver inflammation
Brian Cheng, … , Jerzy W. Kupiec-Weglinski, Kenneth J. Dery
Brian Cheng, … , Jerzy W. Kupiec-Weglinski, Kenneth J. Dery
Published September 23, 2025
Citation Information: JCI Insight. 2025;10(18):e194227. https://doi.org/10.1172/jci.insight.194227.
View: Text | PDF

Posttranscriptional control of hepatic CEACAM1 3′UTR by human antigen R (HuR) mitigates sterile liver inflammation

  • Text
  • PDF
Abstract

Hepatic ischemia-reperfusion injury (IRI) disrupts cellular signaling pathways and contributes to early allograft dysfunction (EAD) in orthotopic liver transplantation (OLT). In this study, we found that the hepatic RNA binding protein Human Antigen R (HuR) regulated the 3′ untranslated region (UTR) of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (Ceacam1) following ischemic stress. Hepatocyte-specific preinjury HuR-null mice exhibited elevated LDH-5 isoenzyme activity and reduced Ceacam1-S expression, reflecting tissue-specific injury. In situ hybridization demonstrated that the stability of Ceacam1 mRNA depended on HuR. Luciferase assays identified Ceacam1 3′UTR cis-elements responsive to high oxygen tension. HuR-targeting short-activating RNAs (saRNAs) preferentially induced the alternative splicing of Ceacam1-S. Antisense oligos directed to the Ceacam1 3′UTR protected WT mice against acute liver injury. In the clinical arm, increased HuR and CEACAM1 expression were associated with reduced proinflammatory phenotype and a lower incidence of EAD in patients with OLT (n = 164). Human discarded livers with elevated ELAVL1/CEACAM1 levels correlated with improved tissue homeostasis. These findings suggest that HuR regulation of Ceacam1 represents a key determinant of donor tissue quality and offers a potential target for future therapeutic strategies in OLT recipients.

Authors

Brian Cheng, Tristan D. Tibbe, Siyuan Yao, Megan Wei, Zeriel Y. Wong, Taylor Torgerson, Richard Chiu, Aanchal S. Kasargod, Kojiro Nakamura, Monica Cappelletti, Myung Sim, Douglas G. Farmer, Fady Kaldas, Jerzy W. Kupiec-Weglinski, Kenneth J. Dery

×

Dietary salt intake worsens the Th17-dependent inflammatory profile of patients with cirrhosis
Amalia Tzoumpa, … , Sonia Pascual, José Manuel González-Navajas
Amalia Tzoumpa, … , Sonia Pascual, José Manuel González-Navajas
Published July 24, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.191354.
View: Text | PDF

Dietary salt intake worsens the Th17-dependent inflammatory profile of patients with cirrhosis

  • Text
  • PDF
Abstract

Background & Aims Liver cirrhosis is characterized by chronic inflammation and fibrosis, with Th17 cells playing a crucial role in its progression. Recent evidence suggests that dietary salt influences immune diseases by modulating Th17 differentiation. This study assessed the impact of dietary salt on Th17-driven inflammation in patients with compensated cirrhosis and explored its effects on liver injury in mouse models. Methods A non-drug, open-label, non-randomized study involved 37 patients with compensated cirrhosis, who were given personalized guidelines to reduce salt intake over three months. Changes in Th17-driven inflammation and liver function markers were assessed at baseline and after salt restriction. In parallel, the impact of a high-salt diet on hepatic CD4+ T cells was analyzed in mouse models of acute liver injury and fibrosis. Results High salt intake was associated with Th17-mediated inflammation and correlated with markers of impaired liver function in these patients. Importantly, moderating salt intake through a personalized nutritional intervention was sufficient to reduce CD4+ T cell- mediated inflammation. Furthermore, analysis of RNA-seq data revealed enrichment of salt-induced Th17 gene signatures in both liver tissue and peripheral cells from patients with liver disease. Similarly, mice fed a high salt diet showed hepatic enrichment of Th17 cells and exacerbated liver fibrosis upon injury. Mechanistic studies revealed that high sodium conditions activated NF-κB and induced IL-6 production in hepatocytes, which may promote Th17 responses. Conclusion Dietary salt exacerbates Th17-driven inflammation and contributes to cirrhosis progression. Salt reduction may represent a viable therapeutic approach to manage inflammation in compensated cirrhosis.

Authors

Amalia Tzoumpa, Beatriz Lozano-Ruiz, Yin Huang, Joanna Picó, Alba Moratalla, María Teresa Pomares, Iván Herrera, Juanjo Lozano, María Rodríguez-Soler, Cayetano Miralles, Pablo Bellot, Paula Piñero, Fabián Tarín, Pedro Zapater, Sonia Pascual, José Manuel González-Navajas

×

Testosterone affects female CD4+ T cells in healthy individuals and autoimmune liver diseases
Lara Henze, … , Dorothee Schwinge, Christoph Schramm
Lara Henze, … , Dorothee Schwinge, Christoph Schramm
Published April 22, 2025
Citation Information: JCI Insight. 2025;10(8):e184544. https://doi.org/10.1172/jci.insight.184544.
View: Text | PDF

Testosterone affects female CD4+ T cells in healthy individuals and autoimmune liver diseases

  • Text
  • PDF
Abstract

Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases with strong female predominance. They are caused by T cell–mediated injury of hepatic parenchymal cells, but the mechanisms underlying this sex bias are unknown. Here, we investigated whether testosterone contributes to T cell activation in women with PBC. Compared with sex- and age-matched healthy controls (n = 23), cisgender (cis) women with PBC (n = 24) demonstrated decreased testosterone serum levels and proinflammatory CD4+ T cell profile in peripheral blood. Testosterone suppressed the expression of TNF and IFN-γ by human CD4+ T cells in vitro. In trans men receiving gender-affirming hormone therapy (GAHT) (n = 25), testosterone affected CD4+ T cell function by inhibiting Th1 and Th17 differentiation and by supporting the differentiation into regulatory Treg. Mechanistically, we provide evidence for a direct effect of testosterone on T cells using mice with T cell–specific deletion of the cytosolic androgen receptor. Supporting a role for testosterone in autoimmune liver disease, we observed an improved disease course and profound changes in T cell states in a trans man with AIH/primary sclerosing cholangitis (PSC) variant syndrome receiving GAHT. We here report a direct effect of testosterone on CD4+ T cells that may contribute to future personalized treatment strategies.

Authors

Lara Henze, Nico Will, Dakyung Lee, Victor Haas, Christian Casar, Jasper Meyer, Stephanie Stein, Franziska Mangler, Silja Steinmann, Tobias Poch, Jenny Krause, Johannes Fuss, Johanna Schröder, Alexandra E. Kulle, Paul-Martin Holterhus, Stefan Bonn, Marcus Altfeld, Samuel Huber, Ansgar W. Lohse, Dorothee Schwinge, Christoph Schramm

×

Ceramide(d18:1/18:1)-Ndufa6 Interaction Inactivates Respiratory Complex I to Attenuate Oxidative-stress-driven Pathogenesis in Liver Ischemia/Reperfusion Injury
Kai Wang, … , Yiyi Li, Chuanjiang Li
Kai Wang, … , Yiyi Li, Chuanjiang Li
Published April 17, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.187083.
View: Text | PDF

Ceramide(d18:1/18:1)-Ndufa6 Interaction Inactivates Respiratory Complex I to Attenuate Oxidative-stress-driven Pathogenesis in Liver Ischemia/Reperfusion Injury

  • Text
  • PDF
Abstract

Oxidative stress driven by malfunctioning respiratory complex I (RC-I) is a crucial pathogenic factor in liver ischemia/reperfusion (I/R) injury. This study investigates the role of alkaline ceramidase 3 (ACER3) and its unsaturated long-chain ceramide (CER) substrates in regulating liver I/R injury through RC-I. Our findings demonstrated that I/R upregulated ACER3/Acer3 and decreased unsaturated long-chain CER levels in human and mouse livers. Both global and hepatocyte-specific Acer3 ablation, as well as treatment with CER(d18:1/18:1), led to a significant increase of CER(d18:1/18:1) levels in the liver, which mitigated the I/R-induced hepatocyte damage and inflammation in mice. Mechanistically, Acer3 modulated CER(d18:1/18:1) levels in mitochondria-associated membranes and endoplasmic reticulum (ER), thereby influencing the transport of CER(d18:1/18:1) from ER to mitochondria. Acer3 ablation and CER(d18:1/18:1) treatment elevated CER(d18:1/18:1) in mitochondria, where CER(d18:1/18:1) bound to the RC-I subunit Ndufa6 to inactivate RC-I and reduced reactive oxygen species production in the I/R-injured mouse liver. These findings underscore the role of CER(d18:1/18:1)-Ndufa6 interaction in suppressing RC-I-mediated oxidative-stress-driven pathogenesis in liver I/R Injury.

Authors

Kai Wang, Leyi Liao, Hanbiao Liang, Pengxiang Huang, Qingping Li, Baoxiong Zhuang, Chen Xie, Xiangyue Mo, Xuesong Deng, Jieyuan Li, Yang Lei, Minghui Zeng, Cungui Mao, Ruijuan Xu, Cuiting Liu, Xianqiu Wu, Jie Zhou, Biao Wang, Yiyi Li, Chuanjiang Li

×

Multicomponent parenteral lipid emulsions do not prevent liver injury in neonatal pigs with obstructive cholestasis
Greg Guthrie, … , Barbara Stoll, Douglas Burrin
Greg Guthrie, … , Barbara Stoll, Douglas Burrin
Published April 17, 2025
Citation Information: JCI Insight. 2025. https://doi.org/10.1172/jci.insight.189196.
View: Text | PDF

Multicomponent parenteral lipid emulsions do not prevent liver injury in neonatal pigs with obstructive cholestasis

  • Text
  • PDF
Abstract

Biliary atresia (BA) is a pediatric liver disease that often necessitates parenteral nutrition (PN) to support growth due to impaired liver function. While soy oil lipid emulsions (SLE) are commonly used in PN, they may contribute to cholestatic liver injury. In contrast, mixed oil lipid emulsions (MLE) show promise in preventing cholestasis in non-BA infants, potentially by restoring bile flow. However, their effectiveness in cases of complete bile duct obstruction, as seen in BA, remains uncertain. To explore the potential benefits of MLE in BA, we utilized a neonatal pig model of bile duct ligation (BDL). Pigs underwent either BDL or sham surgery and were subsequently fed either MLE or SLE via PN, or enterally with formula. The MLE-BDL pigs exhibited significantly greater weight gain compared to those fed SLE or formula enterally. Additionally, MLE-BDL pigs showed higher serum bile acid and gamma-glutamyl transferase concentrations compared to SLE-BDL pigs. However, no significant differences in liver injury, assessed by ductular reaction or fibrosis, were observed between MLE- and SLE-BDL pigs. Based on weight gain alone, MLE may be a superior lipid emulsion for use in neonates with obstructive cholestasis.

Authors

Greg Guthrie, Caitlin Vonderohe, Valeria Meléndez Hebib, Barbara Stoll, Douglas Burrin

×

AMPK activator ATX-304 reduces oxidative stress and improves MASLD via metabolic switching
Emanuel Holm, … , Silvia Remeseiro, Andreas Hörnblad
Emanuel Holm, … , Silvia Remeseiro, Andreas Hörnblad
Published April 8, 2025
Citation Information: JCI Insight. 2025;10(7):e179990. https://doi.org/10.1172/jci.insight.179990.
View: Text | PDF

AMPK activator ATX-304 reduces oxidative stress and improves MASLD via metabolic switching

  • Text
  • PDF
Abstract

Metabolic dysfunction–associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide for which there is only one approved treatment. Adenosine monophosphate–activated protein kinase (AMPK) is an interesting therapeutic target since it acts as a central regulator of cellular metabolism. Despite efforts to target AMPK, no direct activators have yet been approved for treatment of this disease. This study investigated the effect of the AMPK activator ATX-304 in a preclinical mouse model of progressive fatty liver disease. The data demonstrated that ATX-304 diminishes body fat mass, lowers blood cholesterol levels, and mitigates general liver steatosis and the development of liver fibrosis, but with pronounced local heterogeneities. The beneficial effects of ATX-304 treatment were accompanied by a shift in the liver metabolic program, including increased fatty acid oxidation, reduced lipid synthesis, as well as remodeling of cholesterol and lipid transport. We also observed variations in lipid distribution among liver lobes in response to ATX-304, and a shift in the zonal distribution of lipid droplets upon treatment. Taken together, our data suggested that ATX-304 holds promise as a potential treatment for MASLD.

Authors

Emanuel Holm, Isabeau Vermeulen, Saba Parween, Ana López-Pérez, Berta Cillero-Pastor, Michiel Vandenbosch, Silvia Remeseiro, Andreas Hörnblad

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 13
  • 14
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts