typelevel-tools-yj-0.1.0.9: type level tools
Safe HaskellNone
LanguageHaskell2010

Data.TypeLevel.List.Zip

Documentation

type family Zip10 (a :: [k0]) (b :: [k1]) (c :: [k2]) (d :: [k3]) (e :: [k4]) (f :: [k5]) (g :: [k6]) (h :: [k7]) (i :: [k8]) (j :: [k9]) :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] where ... Source #

Equations

Zip10 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) ('[] :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) ('[] :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) ('[] :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) ('[] :: [k6]) (_h :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) ('[] :: [k7]) (_i :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) ('[] :: [k8]) (_j :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) ('[] :: [k9]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)] 
Zip10 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) (d ': ds :: [k3]) (e ': es :: [k4]) (f ': fs :: [k5]) (g ': gs :: [k6]) (h ': hs :: [k7]) (i ': is :: [k8]) (j ': js :: [k9]) = '(a, b, c, d, e, f, g, h, i, j) ': Zip10 as bs cs ds es fs gs hs is js 

type family Zip9 (a :: [k0]) (b :: [k1]) (c :: [k2]) (d :: [k3]) (e :: [k4]) (f :: [k5]) (g :: [k6]) (h :: [k7]) (i :: [k8]) :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] where ... Source #

Equations

Zip9 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) ('[] :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) ('[] :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) ('[] :: [k5]) (_g :: [k6]) (_h :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) ('[] :: [k6]) (_h :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) ('[] :: [k7]) (_i :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) ('[] :: [k8]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7, k8)] 
Zip9 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) (d ': ds :: [k3]) (e ': es :: [k4]) (f ': fs :: [k5]) (g ': gs :: [k6]) (h ': hs :: [k7]) (i ': is :: [k8]) = '(a, b, c, d, e, f, g, h, i) ': Zip9 as bs cs ds es fs gs hs is 

type family Zip8 (a :: [k0]) (b :: [k1]) (c :: [k2]) (d :: [k3]) (e :: [k4]) (f :: [k5]) (g :: [k6]) (h :: [k7]) :: [(k0, k1, k2, k3, k4, k5, k6, k7)] where ... Source #

Equations

Zip8 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) ('[] :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) ('[] :: [k4]) (_f :: [k5]) (_g :: [k6]) (_h :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) ('[] :: [k5]) (_g :: [k6]) (_h :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) ('[] :: [k6]) (_h :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) ('[] :: [k7]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6, k7)] 
Zip8 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) (d ': ds :: [k3]) (e ': es :: [k4]) (f ': fs :: [k5]) (g ': gs :: [k6]) (h ': hs :: [k7]) = '(a, b, c, d, e, f, g, h) ': Zip8 as bs cs ds es fs gs hs 

type family Zip7 (a :: [k0]) (b :: [k1]) (c :: [k2]) (d :: [k3]) (e :: [k4]) (f :: [k5]) (g :: [k6]) :: [(k0, k1, k2, k3, k4, k5, k6)] where ... Source #

Equations

Zip7 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6)] 
Zip7 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6)] 
Zip7 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6)] 
Zip7 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) ('[] :: [k3]) (_e :: [k4]) (_f :: [k5]) (_g :: [k6]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6)] 
Zip7 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) ('[] :: [k4]) (_f :: [k5]) (_g :: [k6]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6)] 
Zip7 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) ('[] :: [k5]) (_g :: [k6]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6)] 
Zip7 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) ('[] :: [k6]) = '[] :: [(k0, k1, k2, k3, k4, k5, k6)] 
Zip7 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) (d ': ds :: [k3]) (e ': es :: [k4]) (f ': fs :: [k5]) (g ': gs :: [k6]) = '(a, b, c, d, e, f, g) ': Zip7 as bs cs ds es fs gs 

type family Zip6 (a :: [k0]) (b :: [k1]) (c :: [k2]) (d :: [k3]) (e :: [k4]) (f :: [k5]) :: [(k0, k1, k2, k3, k4, k5)] where ... Source #

Equations

Zip6 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) = '[] :: [(k0, k1, k2, k3, k4, k5)] 
Zip6 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) = '[] :: [(k0, k1, k2, k3, k4, k5)] 
Zip6 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) (_d :: [k3]) (_e :: [k4]) (_f :: [k5]) = '[] :: [(k0, k1, k2, k3, k4, k5)] 
Zip6 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) ('[] :: [k3]) (_e :: [k4]) (_f :: [k5]) = '[] :: [(k0, k1, k2, k3, k4, k5)] 
Zip6 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) ('[] :: [k4]) (_f :: [k5]) = '[] :: [(k0, k1, k2, k3, k4, k5)] 
Zip6 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) ('[] :: [k5]) = '[] :: [(k0, k1, k2, k3, k4, k5)] 
Zip6 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) (d ': ds :: [k3]) (e ': es :: [k4]) (f ': fs :: [k5]) = '(a, b, c, d, e, f) ': Zip6 as bs cs ds es fs 

type family Zip5 (a :: [k0]) (b :: [k1]) (c :: [k2]) (d :: [k3]) (e :: [k4]) :: [(k0, k1, k2, k3, k4)] where ... Source #

Equations

Zip5 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) = '[] :: [(k0, k1, k2, k3, k4)] 
Zip5 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) (_d :: [k3]) (_e :: [k4]) = '[] :: [(k0, k1, k2, k3, k4)] 
Zip5 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) (_d :: [k3]) (_e :: [k4]) = '[] :: [(k0, k1, k2, k3, k4)] 
Zip5 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) ('[] :: [k3]) (_e :: [k4]) = '[] :: [(k0, k1, k2, k3, k4)] 
Zip5 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) ('[] :: [k4]) = '[] :: [(k0, k1, k2, k3, k4)] 
Zip5 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) (d ': ds :: [k3]) (e ': es :: [k4]) = '(a, b, c, d, e) ': Zip5 as bs cs ds es 

type family Zip4 (a :: [k0]) (b :: [k1]) (c :: [k2]) (d :: [k3]) :: [(k0, k1, k2, k3)] where ... Source #

Equations

Zip4 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) (_d :: [k3]) = '[] :: [(k0, k1, k2, k3)] 
Zip4 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) (_d :: [k3]) = '[] :: [(k0, k1, k2, k3)] 
Zip4 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) (_d :: [k3]) = '[] :: [(k0, k1, k2, k3)] 
Zip4 (_a :: [k0]) (_b :: [k1]) (_c :: [k2]) ('[] :: [k3]) = '[] :: [(k0, k1, k2, k3)] 
Zip4 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) (d ': ds :: [k3]) = '(a, b, c, d) ': Zip4 as bs cs ds 

type family Zip3 (a :: [k0]) (b :: [k1]) (c :: [k2]) :: [(k0, k1, k2)] where ... Source #

Equations

Zip3 ('[] :: [k0]) (_b :: [k1]) (_c :: [k2]) = '[] :: [(k0, k1, k2)] 
Zip3 (_a :: [k0]) ('[] :: [k1]) (_c :: [k2]) = '[] :: [(k0, k1, k2)] 
Zip3 (_a :: [k0]) (_b :: [k1]) ('[] :: [k2]) = '[] :: [(k0, k1, k2)] 
Zip3 (a ': as :: [k0]) (b ': bs :: [k1]) (c ': cs :: [k2]) = '(a, b, c) ': Zip3 as bs cs 

type family Zip2 (a :: [k0]) (b :: [k1]) :: [(k0, k1)] where ... Source #

Equations

Zip2 ('[] :: [k0]) (_b :: [k1]) = '[] :: [(k0, k1)] 
Zip2 (_a :: [k0]) ('[] :: [k1]) = '[] :: [(k0, k1)] 
Zip2 (a ': as :: [k0]) (b ': bs :: [k1]) = '(a, b) ': Zip2 as bs