| Copyright | Bas van Dijk Anders Kaseorg |
|---|---|
| License | BSD3 |
| Maintainer | Bas van Dijk <[email protected]> |
| Safe Haskell | Safe |
| Language | Haskell98 |
Control.Monad.Trans.Control
Contents
Description
This module defines the type class MonadBaseControl, a subset of
MonadBase into which generic control operations such as catch can be
lifted from IO or any other base monad. Instances are based on monad
transformers in MonadTransControl, which includes all standard monad
transformers in the transformers library except ContT.
See the lifted-base
package which uses monad-control to lift IO
operations from the base library (like catch or bracket) into any monad
that is an instance of MonadBase or MonadBaseControl.
See the following tutorial by Michael Snoyman on how to use this package:
https://www.yesodweb.com/book/monad-control
Quick implementation guide
Given a base monad B and a stack of transformers T:
- Define instances
for all transformersMonadTransControlTT, using theanddefaultLiftWithfunctions on the constructor and deconstructor ofdefaultRestoreTT. Define an instance
for the base monad:MonadBaseControlB Binstance MonadBaseControl B B where type StM B a = a liftBaseWith f = fidrestoreM =returnDefine instances
for all transformers:MonadBaseControlB m =>MonadBaseControlB (T m)instance MonadBaseControl b m => MonadBaseControl b (T m) where type StM (T m) a =ComposeStT m a liftBaseWith f =defaultLiftBaseWithrestoreM =defaultRestoreM
- class MonadTrans t => MonadTransControl t where
- type Run t = forall n b. Monad n => t n b -> n (StT t b)
- type RunDefault t t' = forall n b. Monad n => t n b -> n (StT t' b)
- defaultLiftWith :: (Monad m, MonadTransControl n) => (forall b. n m b -> t m b) -> (forall o b. t o b -> n o b) -> (RunDefault t n -> m a) -> t m a
- defaultRestoreT :: (Monad m, MonadTransControl n) => (n m a -> t m a) -> m (StT n a) -> t m a
- type RunDefault2 t n n' = forall m b. (Monad m, Monad (n' m)) => t m b -> m (StT n' (StT n b))
- defaultLiftWith2 :: (Monad m, Monad (n' m), MonadTransControl n, MonadTransControl n') => (forall b. n (n' m) b -> t m b) -> (forall o b. t o b -> n (n' o) b) -> (RunDefault2 t n n' -> m a) -> t m a
- defaultRestoreT2 :: (Monad m, Monad (n' m), MonadTransControl n, MonadTransControl n') => (n (n' m) a -> t m a) -> m (StT n' (StT n a)) -> t m a
- class MonadBase b m => MonadBaseControl b m | m -> b where
- type RunInBase m b = forall a. m a -> b (StM m a)
- type ComposeSt t m a = StM m (StT t a)
- type RunInBaseDefault t m b = forall a. t m a -> b (ComposeSt t m a)
- defaultLiftBaseWith :: (MonadTransControl t, MonadBaseControl b m) => (RunInBaseDefault t m b -> b a) -> t m a
- defaultRestoreM :: (MonadTransControl t, MonadBaseControl b m) => ComposeSt t m a -> t m a
- control :: MonadBaseControl b m => (RunInBase m b -> b (StM m a)) -> m a
- embed :: MonadBaseControl b m => (a -> m c) -> m (a -> b (StM m c))
- embed_ :: MonadBaseControl b m => (a -> m ()) -> m (a -> b ())
- captureT :: (MonadTransControl t, Monad (t m), Monad m) => t m (StT t ())
- captureM :: MonadBaseControl b m => m (StM m ())
- liftBaseOp :: MonadBaseControl b m => ((a -> b (StM m c)) -> b (StM m d)) -> (a -> m c) -> m d
- liftBaseOp_ :: MonadBaseControl b m => (b (StM m a) -> b (StM m c)) -> m a -> m c
- liftBaseDiscard :: MonadBaseControl b m => (b () -> b a) -> m () -> m a
- liftBaseOpDiscard :: MonadBaseControl b m => ((a -> b ()) -> b c) -> (a -> m ()) -> m c
- liftThrough :: (MonadTransControl t, Monad (t m), Monad m) => (m (StT t a) -> m (StT t b)) -> t m a -> t m b
MonadTransControl
class MonadTrans t => MonadTransControl t where Source #
The MonadTransControl type class is a stronger version of :MonadTrans
Instances of know how to MonadTrans actions in the base monad to
the transformed monad. These lifted actions, however, are completely unaware
of the monadic state added by the transformer.lift
instances are aware of the monadic state of the
transformer and allow to save and restore this state.MonadTransControl
This allows to lift functions that have a monad transformer in both positive and negative position. Take, for example, the function
withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r
instances can only lift the return type of the MonadTranswithFile
function:
withFileLifted :: MonadTrans t => FilePath -> IOMode -> (Handle -> IO r) -> t IO r withFileLifted file mode action = lift (withFile file mode action)
However, is not powerful enough to make MonadTranswithFileLifted
accept a function that returns t IO. The reason is that we need to take
away the transformer layer in order to pass the function to .
withFile allows us to do this:MonadTransControl
withFileLifted' :: (Monad (t IO), MonadTransControl t) => FilePath -> IOMode -> (Handle -> t IO r) -> t IO r withFileLifted' file mode action = liftWith (\run -> withFile file mode (run . action)) >>= restoreT . return
Associated Types
Monadic state of t.
The monadic state of a monad transformer is the result type of its run
function, e.g.:
runReaderT::ReaderTr m a -> r -> m aStT(ReaderTr) a ~ arunStateT::StateTs m a -> s -> m (a, s)StT(StateTs) a ~ (a, s)runMaybeT::MaybeTm a -> m (Maybea)StTMaybeTa ~Maybea
Provided type instances:
StTIdentityTa ~ a StTMaybeTa ~Maybea StT (ErrorTe) a ~Errore =>Eithere a StT (ExceptTe) a ~Eithere a StTListTa ~ [a] StT (ReaderTr) a ~ a StT (StateTs) a ~ (a, s) StT (WriterTw) a ~Monoidw => (a, w) StT (RWSTr w s) a ~Monoidw => (a, s, w)
Methods
liftWith :: Monad m => (Run t -> m a) -> t m a Source #
liftWith is similar to lift in that it lifts a computation from
the argument monad to the constructed monad.
Instances should satisfy similar laws as the MonadTrans laws:
liftWith . const . return = return
liftWith (const (m >>= f)) = liftWith (const m) >>= liftWith . const . f
The difference with lift is that before lifting the m computation
liftWith captures the state of t. It then provides the m
computation with a Run function that allows running t n computations in
n (for all n) on the captured state, e.g.
withFileLifted :: (Monad (t IO), MonadTransControl t) => FilePath -> IOMode -> (Handle -> t IO r) -> t IO r withFileLifted file mode action = liftWith (\run -> withFile file mode (run . action)) >>= restoreT . return
If the Run function is ignored, liftWith coincides with lift:
lift f = liftWith (const f)
Implementations use the function associated with a transformer:Run
liftWith ::Monadm => ((Monadn =>ReaderTr n b -> n b) -> m a) ->ReaderTr m a liftWith f =ReaderT(r -> f (action ->runReaderTaction r)) liftWith ::Monadm => ((Monadn =>StateTs n b -> n (b, s)) -> m a) ->StateTs m a liftWith f =StateT(s ->liftM(x -> (x, s)) (f (action ->runStateTaction s))) liftWith ::Monadm => ((Monadn =>MaybeTn b -> n (Maybeb)) -> m a) ->MaybeTm a liftWith f =MaybeT(liftMJust(frunMaybeT))
restoreT :: Monad m => m (StT t a) -> t m a Source #
Construct a t computation from the monadic state of t that is
returned from a Run function.
Instances should satisfy:
liftWith (\run -> run t) >>= restoreT . return = t
restoreT is usually implemented through the constructor of the monad
transformer:
ReaderT:: (r -> m a) ->ReaderTr m a restoreT :: m a ->ReaderTr m a restoreT action =ReaderT{ runReaderT =constaction }StateT:: (s -> m (a, s)) ->StateTs m a restoreT :: m (a, s) ->StateTs m a restoreT action =StateT{ runStateT =constaction }MaybeT:: m (Maybea) ->MaybeTm a restoreT :: m (Maybea) ->MaybeTm a restoreT action =MaybeTaction
Example type signatures:
restoreT ::Monadm => m a ->IdentityTm a restoreT ::Monadm => m (Maybea) ->MaybeTm a restoreT :: (Monadm,Errore) => m (Eithere a) ->ErrorTe m a restoreT ::Monadm => m (Eithere a) ->ExceptTe m a restoreT ::Monadm => m [a] ->ListTm a restoreT ::Monadm => m a ->ReaderTr m a restoreT ::Monadm => m (a, s) ->StateTs m a restoreT :: (Monadm,Monoidw) => m (a, w) ->WriterTw m a restoreT :: (Monadm,Monoidw) => m (a, s, w) ->RWSTr w s m a
Instances
| MonadTransControl MaybeT Source # | |
| MonadTransControl ListT Source # | |
| Monoid w => MonadTransControl (WriterT w) Source # | |
| Monoid w => MonadTransControl (WriterT w) Source # | |
| MonadTransControl (StateT s) Source # | |
| MonadTransControl (StateT s) Source # | |
| MonadTransControl (IdentityT *) Source # | |
| MonadTransControl (ExceptT e) Source # | |
| Error e => MonadTransControl (ErrorT e) Source # | |
| MonadTransControl (ReaderT * r) Source # | |
| Monoid w => MonadTransControl (RWST r w s) Source # | |
| Monoid w => MonadTransControl (RWST r w s) Source # | |
type Run t = forall n b. Monad n => t n b -> n (StT t b) Source #
A function that runs a transformed monad t n on the monadic state that
was captured by liftWith
A Run t function yields a computation in n that returns the monadic state
of t. This state can later be used to restore a t computation using
restoreT.
Example type equalities:
RunIdentityT~ forall n b.Monadn =>IdentityTn b -> n b RunMaybeT~ forall n b.Monadn =>MaybeTn b -> n (Maybeb) Run (ErrorTe) ~ forall n b. (Monadn,Errore) =>ErrorTe n b -> n (Eithere b) Run (ExceptTe) ~ forall n b.Monadn =>ExceptTe n b -> n (Eithere b) RunListT~ forall n b.Monadn =>ListTn b -> n [b] Run (ReaderTr) ~ forall n b.Monadn =>ReaderTr n b -> n b Run (StateTs) ~ forall n b.Monadn =>StateTs n b -> n (a, s) Run (WriterTw) ~ forall n b. (Monadn,Monoidw) =>WriterTw n b -> n (a, w) Run (RWSTr w s) ~ forall n b. (Monadn,Monoidw) =>RWSTr w s n b -> n (a, s, w)
This type is usually satisfied by the run function of a transformer:
fliprunReaderT:: r -> Run (ReaderTr)fliprunStateT:: s -> Run (StateTs)runMaybeT:: RunMaybeT
Defaults
The following functions can be used to define a MonadTransControl instance
for a monad transformer which simply is a newtype around another monad
transformer which already has a MonadTransControl instance. For example:
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
newtype CounterT m a = CounterT {unCounterT :: StateT Int m a}
deriving (Monad, MonadTrans)
instance MonadTransControl CounterT where
type StT CounterT a = StT (StateT Int) a
liftWith = defaultLiftWith CounterT unCounterT
restoreT = defaultRestoreT CounterT
type RunDefault t t' = forall n b. Monad n => t n b -> n (StT t' b) Source #
A function like Run that runs a monad transformer t which wraps the
monad transformer t'. This is used in defaultLiftWith.
Arguments
| :: (Monad m, MonadTransControl n) | |
| => (forall b. n m b -> t m b) | Monad constructor |
| -> (forall o b. t o b -> n o b) | Monad deconstructor |
| -> (RunDefault t n -> m a) | |
| -> t m a |
Default definition for the liftWith method.
Arguments
| :: (Monad m, MonadTransControl n) | |
| => (n m a -> t m a) | Monad constructor |
| -> m (StT n a) | |
| -> t m a |
Default definition for the restoreT method.
Defaults for a stack of two
The following functions can be used to define a MonadTransControl instance
for a monad transformer stack of two.
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
newtype CalcT m a = CalcT { unCalcT :: StateT Int (ExceptT String m) a }
deriving (Monad, MonadTrans)
instance MonadTransControl CalcT where
type StT CalcT a = StT (ExceptT String) (StT (StateT Int) a)
liftWith = defaultLiftWith2 CalcT unCalcT
restoreT = defaultRestoreT2 CalcT
type RunDefault2 t n n' = forall m b. (Monad m, Monad (n' m)) => t m b -> m (StT n' (StT n b)) Source #
A function like Run that runs a monad transformer t which wraps the
monad transformers n and n'. This is used in defaultLiftWith2.
Arguments
| :: (Monad m, Monad (n' m), MonadTransControl n, MonadTransControl n') | |
| => (forall b. n (n' m) b -> t m b) | Monad constructor |
| -> (forall o b. t o b -> n (n' o) b) | Monad deconstructor |
| -> (RunDefault2 t n n' -> m a) | |
| -> t m a |
Default definition for the liftWith method.
Arguments
| :: (Monad m, Monad (n' m), MonadTransControl n, MonadTransControl n') | |
| => (n (n' m) a -> t m a) | Monad constructor |
| -> m (StT n' (StT n a)) | |
| -> t m a |
Default definition for the restoreT method for double MonadTransControl.
MonadBaseControl
class MonadBase b m => MonadBaseControl b m | m -> b where Source #
Writing instances
The usual way to write a instance for a transformer
stack over a base monad MonadBaseControlB is to write an instance MonadBaseControl B B
for the base monad, and MonadTransControl T instances for every transformer
T. Instances for are then simply implemented using
MonadBaseControl, ComposeSt, defaultLiftBaseWith.defaultRestoreM
Minimal complete definition
Associated Types
Monadic state that m adds to the base monad b.
For all base (non-transformed) monads, StM m a ~ a:
StMIOa ~ a StMMaybea ~ a StM (Eithere) a ~ a StM [] a ~ a StM ((->) r) a ~ a StMIdentitya ~ a StMSTMa ~ a StM (STs) a ~ a
If m is a transformed monad, m ~ t b, is the monadic state of
the transformer StMt (given by its StT from MonadTransControl). For a
transformer stack, is defined recursively:StM
StM (IdentityTm) a ~ComposeStIdentityTm a ~ StM m a StM (MaybeTm) a ~ComposeStMaybeTm a ~ StM m (Maybea) StM (ErrorTe m) a ~ComposeStErrorTm a ~Errore => StM m (Eithere a) StM (ExceptTe m) a ~ComposeStExceptTm a ~ StM m (Eithere a) StM (ListTm) a ~ComposeStListTm a ~ StM m [a] StM (ReaderTr m) a ~ComposeStReaderTm a ~ StM m a StM (StateTs m) a ~ComposeStStateTm a ~ StM m (a, s) StM (WriterTw m) a ~ComposeStWriterTm a ~Monoidw => StM m (a, w) StM (RWSTr w s m) a ~ComposeStRWSTm a ~Monoidw => StM m (a, s, w)
Methods
liftBaseWith :: (RunInBase m b -> b a) -> m a Source #
liftBaseWith is similar to liftIO and liftBase in that it
lifts a base computation to the constructed monad.
Instances should satisfy similar laws as the MonadIO and MonadBase laws:
liftBaseWith . const . return = return
liftBaseWith (const (m >>= f)) = liftBaseWith (const m) >>= liftBaseWith . const . f
The difference with liftBase is that before lifting the base computation
liftBaseWith captures the state of m. It then provides the base
computation with a RunInBase function that allows running m
computations in the base monad on the captured state:
withFileLifted :: MonadBaseControl IO m => FilePath -> IOMode -> (Handle -> m a) -> m a
withFileLifted file mode action = liftBaseWith (\runInBase -> withFile file mode (runInBase . action)) >>= restoreM
-- = control $ \runInBase -> withFile file mode (runInBase . action)
-- = liftBaseOp (withFile file mode) action
is usually not implemented directly, but using
liftBaseWith.defaultLiftBaseWith
restoreM :: StM m a -> m a Source #
Construct a m computation from the monadic state of m that is
returned from a RunInBase function.
Instances should satisfy:
liftBaseWith (\runInBase -> runInBase m) >>= restoreM = m
is usually not implemented directly, but using
restoreM.defaultRestoreM
Instances
type RunInBase m b = forall a. m a -> b (StM m a) Source #
A function that runs a m computation on the monadic state that was
captured by liftBaseWith
A RunInBase m function yields a computation in the base monad of m that
returns the monadic state of m. This state can later be used to restore the
m computation using restoreM.
Example type equalities:
RunInBase (IdentityTm) b ~ forall a.IdentityTm a -> b (StMm a) RunInBase (MaybeTm) b ~ forall a.MaybeTm a -> b (StMm (Maybea)) RunInBase (ErrorTe m) b ~ forall a.Errore =>ErrorTe m a -> b (StMm (Eithere a)) RunInBase (ExceptTe m) b ~ forall a.ExceptTe m a -> b (StMm (Eithere a)) RunInBase (ListTm) b ~ forall a.ListTm a -> b (StMm [a]) RunInBase (ReaderTr m) b ~ forall a.ReaderTm a -> b (StMm a) RunInBase (StateTs m) b ~ forall a.StateTs m a -> b (StMm (a, s)) RunInBase (WriterTw m) b ~ forall a.Monoidw =>WriterTw m a -> b (StMm (a, w)) RunInBase (RWSTr w s m) b ~ forall a.Monoidw =>RWSTr w s m a -> b (StMm (a, s, w))
For a transformed base monad m ~ t b, 'RunInBase m b' ~ .Run t
Defaults
Note that by using the following default definitions it's easy to make a
monad transformer T an instance of MonadBaseControl:
instance MonadBaseControl b m => MonadBaseControl b (T m) where
type StM (T m) a = ComposeSt T m a
liftBaseWith = defaultLiftBaseWith
restoreM = defaultRestoreM
Defining an instance for a base monad B is equally straightforward:
instance MonadBaseControl B B where
type StM B a = a
liftBaseWith f = f id
restoreM = return
type ComposeSt t m a = StM m (StT t a) Source #
Handy type synonym that composes the monadic states of t and m.
It can be used to define the StM for new MonadBaseControl instances.
type RunInBaseDefault t m b = forall a. t m a -> b (ComposeSt t m a) Source #
A function like RunInBase that runs a monad transformer t in its base
monad b. It is used in defaultLiftBaseWith.
defaultLiftBaseWith :: (MonadTransControl t, MonadBaseControl b m) => (RunInBaseDefault t m b -> b a) -> t m a Source #
Default definition for the liftBaseWith method.
Note that it composes a liftWith of t with a liftBaseWith of m to
give a liftBaseWith of t m:
defaultLiftBaseWith = \f ->liftWith$ \run ->liftBaseWith$ \runInBase -> f $ runInBase . run
defaultRestoreM :: (MonadTransControl t, MonadBaseControl b m) => ComposeSt t m a -> t m a Source #
Utility functions
control :: MonadBaseControl b m => (RunInBase m b -> b (StM m a)) -> m a Source #
An often used composition: control f = liftBaseWith f >>= restoreM
Example:
liftedBracket :: MonadBaseControl IO m => m a -> (a -> m b) -> (a -> m c) -> m c
liftedBracket acquire release action = control $ \runInBase ->
bracket (runInBase acquire)
(\saved -> runInBase (restoreM saved >>= release))
(\saved -> runInBase (restoreM saved >>= action))
embed :: MonadBaseControl b m => (a -> m c) -> m (a -> b (StM m c)) Source #
Embed a transformer function as an function in the base monad returning a mutated transformer state.
embed_ :: MonadBaseControl b m => (a -> m ()) -> m (a -> b ()) Source #
Performs the same function as embed, but discards transformer state
from the embedded function.
captureT :: (MonadTransControl t, Monad (t m), Monad m) => t m (StT t ()) Source #
Capture the current state of a transformer
captureM :: MonadBaseControl b m => m (StM m ()) Source #
Capture the current state above the base monad
liftBaseOp :: MonadBaseControl b m => ((a -> b (StM m c)) -> b (StM m d)) -> (a -> m c) -> m d Source #
liftBaseOp is a particular application of liftBaseWith that allows
lifting control operations of type:
((a -> b c) -> b c)
to:
(MonadBaseControl b m => (a -> m c) -> m c)For example:
liftBaseOp alloca :: (Storable a,MonadBaseControlIOm) => (Ptr a -> m c) -> m c
liftBaseOp_ :: MonadBaseControl b m => (b (StM m a) -> b (StM m c)) -> m a -> m c Source #
liftBaseOp_ is a particular application of liftBaseWith that allows
lifting control operations of type:
(b a -> b a)
to:
(MonadBaseControl b m => m a -> m a)For example:
liftBaseOp_ mask_ ::MonadBaseControlIOm => m a -> m a
liftBaseDiscard :: MonadBaseControl b m => (b () -> b a) -> m () -> m a Source #
liftBaseDiscard is a particular application of liftBaseWith that allows
lifting control operations of type:
(b () -> b a)
to:
(MonadBaseControl b m => m () -> m a)Note that, while the argument computation m () has access to the captured
state, all its side-effects in m are discarded. It is run only for its
side-effects in the base monad b.
For example:
liftBaseDiscard forkIO ::MonadBaseControlIOm => m () -> m ThreadId
liftBaseOpDiscard :: MonadBaseControl b m => ((a -> b ()) -> b c) -> (a -> m ()) -> m c Source #
liftBaseOpDiscard is a particular application of liftBaseWith that allows
lifting control operations of type:
((a -> b ()) -> b c)
to:
(MonadBaseControl b m => (a -> m ()) -> m c)Note that, while the argument computation m () has access to the captured
state, all its side-effects in m are discarded. It is run only for its
side-effects in the base monad b.
For example:
liftBaseDiscard (runServer addr port) ::MonadBaseControlIOm => m () -> m ()
Arguments
| :: (MonadTransControl t, Monad (t m), Monad m) | |
| => (m (StT t a) -> m (StT t b)) | |
| -> t m a | |
| -> t m b |
Transform an action in t m using a transformer that operates on the underlying monad m