| Copyright | (c) 2013-2023 Brendan Hay |
|---|---|
| License | Mozilla Public License, v. 2.0. |
| Maintainer | Brendan Hay |
| Stability | auto-generated |
| Portability | non-portable (GHC extensions) |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
Amazonka.SageMaker.Types.AutoMLDataSplitConfig
Description
Documentation
data AutoMLDataSplitConfig Source #
This structure specifies how to split the data into train and validation datasets. The validation and training datasets must contain the same headers. The validation dataset must be less than 2 GB in size.
See: newAutoMLDataSplitConfig smart constructor.
Constructors
| AutoMLDataSplitConfig' | |
Fields
| |
Instances
newAutoMLDataSplitConfig :: AutoMLDataSplitConfig Source #
Create a value of AutoMLDataSplitConfig with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:validationFraction:AutoMLDataSplitConfig', autoMLDataSplitConfig_validationFraction - The validation fraction (optional) is a float that specifies the portion
of the training dataset to be used for validation. The default value is
0.2, and values must be greater than 0 and less than 1. We recommend
setting this value to be less than 0.5.
autoMLDataSplitConfig_validationFraction :: Lens' AutoMLDataSplitConfig (Maybe Double) Source #
The validation fraction (optional) is a float that specifies the portion of the training dataset to be used for validation. The default value is 0.2, and values must be greater than 0 and less than 1. We recommend setting this value to be less than 0.5.