/* Test Grid::upper_bound_assign(). Copyright (C) 2001-2009 Roberto Bagnara This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { bool test01() { Variable A(0); Variable B(1); Variable C(2); Grid_Generator_System gs1; gs1.insert(grid_point(A + 0*C)); Grid_Generator_System gs2; gs2.insert(grid_point(2*A + 0*C)); Grid gr1(gs1); print_generators(gr1, "*** gr1 ***"); Grid gr2(gs2); print_generators(gr2, "*** gr2 ***"); gr1.upper_bound_assign(gr2); Grid_Generator_System known_gs; known_gs.insert(grid_point(A + 0*C)); known_gs.insert(grid_point(2*A)); Grid known_gr(known_gs); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign(gr2) ***"); return ok; } // upper_bound_assign and upper_bound_assign_if_exact - Two empty grids. bool test03() { Variable A(0); Variable B(1); Variable C(2); Grid gr1(4, EMPTY); print_generators(gr1, "*** gr1 ***"); Grid gr2(4, EMPTY); print_generators(gr2, "*** gr2 ***"); Grid known_gr(4, EMPTY); bool ok = (gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - First grid empty. bool test04() { Variable A(0); Grid gr1(4, EMPTY); print_generators(gr1, "*** gr1 ***"); Grid gr2(4, EMPTY); gr2.add_grid_generator(grid_point(2*A)); print_generators(gr2, "*** gr2 ***"); Grid known_gr = gr2; bool ok = (gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - Second grid empty. bool test05() { Variable B(1); Grid gr1(4, EMPTY); gr1.add_grid_generator(grid_point()); gr1.add_grid_generator(grid_line(B)); print_generators(gr1, "*** gr1 ***"); Grid gr2(4, EMPTY); print_generators(gr2, "*** gr2 ***"); Grid known_gr = gr1; bool ok = (gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - Zero dimension universes. bool test06() { Grid gr1(0); print_generators(gr1, "*** gr1 ***"); Grid gr2(0); print_generators(gr2, "*** gr2 ***"); Grid known_gr = gr1; bool ok = (gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - First included in second. bool test07() { Variable A(0); Grid gr1(1); gr1.add_congruence((A %= 0) / 2); print_congruences(gr1, "*** gr1 ***"); Grid gr2(1); gr2.add_congruence(A %= 0); print_congruences(gr2, "*** gr2 ***"); Grid known_gr = gr2; bool ok = (gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - Second included in first. bool test08() { Variable A(0); Variable B(1); Grid gr1(2); gr1.add_congruence(A - B %= 0); print_congruences(gr1, "*** gr1 ***"); Grid gr2(2); gr2.add_constraint(A - B == 0); print_congruences(gr2, "*** gr2 ***"); Grid known_gr = gr1; bool ok = (gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - Exact join. bool test09() { Variable A(0); Variable B(1); Grid gr1(2); gr1.add_congruence((A %= 0) / 2); gr1.add_congruence((B %= 0) / 2); print_congruences(gr1, "*** gr1 ***"); Grid gr2(2); gr2.add_congruence((A %= 1) / 2); gr2.add_congruence((B %= 1) / 2); print_congruences(gr2, "*** gr2 ***"); Grid known_gr(2); known_gr.add_congruence((A - B %= 0) / 2); known_gr.add_congruence(A %= 0); bool ok = (gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - Two points (join adds more points). bool test10() { Variable A(0); Grid_Generator_System gs1; gs1.insert(grid_point(A)); Grid_Generator_System gs2; gs2.insert(grid_point(3*A, 5)); Grid gr1(gs1); print_generators(gr1, "*** gr1 ***"); Grid gr2(gs2); print_generators(gr2, "*** gr2 ***"); Grid known_gr = gr1; bool ok = (!gr1.upper_bound_assign_if_exact(gr2)); if (ok) ok &= (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign_if_exact(gr2) ***"); return ok; } // upper_bound_assign_if_exact - Space dimension exception. bool test11() { Variable A(0); Variable B(1); Variable C(2); Grid_Generator_System gs; gs.insert(grid_point(B + 0*C)); Grid gr1(gs); Grid gr2(4); gr2.add_constraint(A == 0); gr2.add_constraint(B == 0); gr2.add_constraint(C == 0); try { gr1.upper_bound_assign_if_exact(gr2); } catch (const std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl; return true; } catch (...) { } return false; } // upper_bound_assign - Divisor normalization. bool test12() { Variable A(0); Variable B(1); Variable C(2); Grid_Generator_System gs1; gs1.insert(grid_point(0*C)); gs1.insert(grid_line(A)); gs1.insert(grid_line(B)); Grid gr1(gs1); print_generators(gr1, "*** gr1 ***"); Grid_Generator_System gs2; gs2.insert(grid_point()); gs2.insert(grid_point(C, 3)); Grid gr2(gs2); print_generators(gr2, "*** gr2 ***"); gr1.upper_bound_assign(gr2); Congruence_System known_cgs; known_cgs.insert((3*C %= 0) / 1); Grid known_gr(known_cgs); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.upper_bound_assign(gr2) ***"); return ok; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST(test12); END_MAIN